Advertisement

JOM

, Volume 62, Issue 10, pp 13–19 | Cite as

Oxidation-resistant coatings for ultra-high-temperature refractory Mo-based alloys

  • J. H. PerepezkoEmail author
  • R. Sakidja
Refractory Metals Research Summary

Abstract

The synthesis of robust coatings that provide protection against environmental attack at ultra-high temperatures is a difficult challenge. In order to achieve this goal for Mo-based alloys the fundamental concepts of reactive diffusion pathway analysis and kinetic biasing are used to design a multilayer coating with a phase sequencing that provides for structural and thermodynamic compatibility and an underlying diffusion barrier to maintain coating integrity. The coating structure evolution during high-temperature exposure facilitates a prolonged lifetime as well as a self-healing capability. Both borosilicide and aluminide coatings that can be synthesized by a pack cementation process are demonstrated to yield superior environmental resistance on Mo-based systems at temperatures up to l,700°C and can be adapted to apply to other refractory metal systems.

Keywords

Cementation Multilayer Coating Aluminide Coating Pack Cementation Cementation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-C. Zhao and J.H. Westbrook, MRS Bulletin, 28(9) (2003), pp. 622–627.Google Scholar
  2. 2.
    D.M. Dimiduk and J.H. Perepezko, MRS Bulletin, 28(9) (2003), pp. 639–645.Google Scholar
  3. 3.
    J.H. Perepezko, R. Sakidja, and K.S. Kumar, in Advanced Structural Materials: Properties, Design Optimization, and Applications, ed. W. Soboyejo (Boca Raton, FL: CRC Press, 2007), pp. 437–473.Google Scholar
  4. 4.
    J.H. Schneibel, R.O. Ritchie, J.J. Kruzic, and P.F. Tortorelli, Metall. Mater. Trans., 36A (2005), pp. 525–531.CrossRefGoogle Scholar
  5. 5.
    A.P. Alur, N. Chollacoop, and K.S. Kumar, Acta Material, 52 (2004), pp. 5571–5587.CrossRefGoogle Scholar
  6. 6.
    J.H. Perepezko, R. Sakidja, S. Kim, Z. Dong, and J.S. Park, in Third International Symposium on Structural Intermetallics (ISSI-3), ed. Kevin J. Hemker and Dennis M. Dimiduk (Warrendale, PA: TMS, 2002), pp. 505–514.Google Scholar
  7. 7.
    R. Sakidja and J.H. Perepezko, J. Nuclear Mater., 366 (2007), pp. 407–416.CrossRefADSGoogle Scholar
  8. 8.
    R. Sakidja, J.H. Perepezko, S. Kim, and N. Sekido, Acta Mater., 56 (2008), pp. 5223–5244.CrossRefGoogle Scholar
  9. 9.
    S. Kim and J.H. Perepezko, J. Phase Equilibria and Diffusion, 27(6) (2006), pp. 605–613.Google Scholar
  10. 10.
    M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk, Intermetallics, 10 (2002), pp. 225–232.CrossRefGoogle Scholar
  11. 11.
    V. Supatarawanich, D.R. Johnson, and C.T. Liu, Mater. Sci. Eng. A, 344 (2003), pp. 328–339.CrossRefGoogle Scholar
  12. 12.
    D.M. Berczik, U.S. patents 5,595,616 (1997) and 5,693,156 (1997).Google Scholar
  13. 13.
    J.S. Park, R. Sakidja, and J.H. Perepezko, Scripta Mater., 46 (2002), pp. 765–770.CrossRefGoogle Scholar
  14. 14.
    D.A. Helmick, G.H. Meier, and F.S. Petit, Metall. and Mater. Trans., 36A (2005), pp. 3371–3383.CrossRefGoogle Scholar
  15. 15.
    K. Yoshimi, S. Nakatani, T Suda, S. Hanada, and H. Habazaki, Intermetallics, 10 (2002), pp. 407–414.CrossRefGoogle Scholar
  16. 16.
    K. Yoshimi, S. Nakatani, N. Nomura, and S. Hanada, Intermetallics, 11 (2003), pp. 787–794.CrossRefGoogle Scholar
  17. 17.
    D.M. Shah, D. Berczik, D.L. Anton, and R. Hecht, Mater. Sci. Eng. A, 155 (1992), pp. 45–57.CrossRefGoogle Scholar
  18. 18.
    R. Sakidja, J.S. Park, J. Hamann, and J.H. Perepezko, Scripta Mater., 53 (2005), pp. 723–728.CrossRefGoogle Scholar
  19. 19.
    R. Sakidja, F. Rioult, J. Werner, and J.H. Perepezko, Scripta Mater., 55 (2006), pp. 903–906.CrossRefGoogle Scholar
  20. 20.
    J.H. Perepezko, J.S. Park, and R. Sakidja, U.S. patent 7,005,191 (2006).Google Scholar
  21. 21.
    S.R. Levine and R.M. Caves, J. Electrochem. Soc., 121 (1974), pp. 1051–1064.CrossRefGoogle Scholar
  22. 22.
    A. Mueller, G. Wang, R.A. Rapp, E.L. Courtright, and T.A. Kircher, Mater. Sci. Eng., A155 (1992), pp. 199–207.Google Scholar
  23. 23.
    B.V. Cockram and R.A. Rapp, Metall. Mater. Trans., 26A (1995), pp. 777–791.CrossRefGoogle Scholar
  24. 24.
    N.P. Bansal and R.H. Doremus, editors, Handbook of Glass Properties (Orlando, FL: Academic Press, 1986).Google Scholar
  25. 25.
    A.E. McHale and R.S. Roth, Phase Equilibria Diagrams, 12 (1996), pp. 11–12.Google Scholar
  26. 26.
    J.S. Kirkaldy and D.J. Young, Diffusion in the Condensed State (London: Institute of Metals, 1987).Google Scholar
  27. 27.
    M.K. Meyer, A.J. Thorn, and M. Akinc, Intermetallics, 7 (1999), pp. 153–162.CrossRefGoogle Scholar
  28. 28.
    J.H. Perepezko, M.H. da Silva Bassani, J.S. Park, A.S. Edelstein, and R.K. Everett, Mater. Sci. Eng. A, 195 (1995), pp. 1–11.CrossRefGoogle Scholar
  29. 29.
    M. Meyer, M.J. Kramer, and M. Akinc, Intermetallics, 4(4) (1996), pp. 273–281.CrossRefGoogle Scholar
  30. 30.
    M. Akinc, M.K. Meyer, M.J. Kramer, A.J. Thorn, J.J. Huebsch and B. Cook, Intermetallics, A261 (1999), pp. 16–23.Google Scholar
  31. 31.
    P.C. Tortorici and M.A. Dayananda, Scripta Mater., 38 (1998), pp. 1863–1869.CrossRefGoogle Scholar
  32. 32.
    J-K. Yoon, J-K. Lee, K-H. Lee, J-Y. Byun, G-Ho Kim, and K-T. Honga, Intermetallics, 11(7) (2003), pp. 687–696.CrossRefGoogle Scholar
  33. 33.
    F. Rioult, N. Sekido, R. Sakidja, and J.H. Perepezko, J. Electrochemical Society, 154(11) (2007), pp. C692–C701.CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations