Advertisement

JOM

, Volume 62, Issue 7, pp 71–75 | Cite as

Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses

  • Nicholas W. Meghri
  • Amalie E. Donius
  • Benjamin W. Riblett
  • Elizabeth J. Martin
  • Alisa Morss Clyne
  • Ulrike G. K. Wegst
Biological and Biomedical Materials / Research Summary

Abstract

Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As chitosan is a well-known carrier for biochemical stimuli, the focus of this study was on structure-property correlations, to evaluate the effects of composition and processing conditions on the three-dimensional architecture and properties of freeze-cast scaffolds; to establish whether freeze-east scaffolds are promising candidates as constructs promoting vascularization; and to conduct initial tissue culture studies with endothelial cells on flat substrates of identical compositions as those of the scaffolds to test whether these are biocompatible and promote cell attachment and proliferation.

Keywords

Chitosan Tissue Engineering Vessel Growth Scaffold Material Tissue Engineering Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Lavik and R. Langer, Applied Microbiology and Biotechnology, 65(1) (2004), pp. 1–8.CrossRefPubMedGoogle Scholar
  2. 2.
    H. Greene, Exp. Med, 73 (1941), pp. 461–74.CrossRefGoogle Scholar
  3. 3.
    G.F. Muschler, C. Nakamoto, and L.G. Griffith, J. Bone & Joint Surgery, 86-A(7) (2004), pp. 1541–1558.Google Scholar
  4. 4.
    E. Polykandriotis et al., J. Cellular and Molecular Medicine, 11(1) (2007), pp. 6–20.CrossRefGoogle Scholar
  5. 5.
    M. Shin et al., Biomedical Microdevices, 6(4) (2004), pp. 269–278.CrossRefPubMedGoogle Scholar
  6. 6.
    J.T. Borenstein et al., Biomedical Microdevices, 4(3) (2002), pp. 167–175.CrossRefGoogle Scholar
  7. 7.
    H.J. Kong et al., Proceedings of the National Academy of Sciences of the United States of America, 102(12) (2005), pp. 4300–4305.CrossRefPubMedADSGoogle Scholar
  8. 8.
    S. Huang and D.E. Ingber, Nature Cell Biology, 1(5) (1999), pp. E131–E138.CrossRefPubMedGoogle Scholar
  9. 9.
    V. Karageorgiou and D. Kaplan, Biomaterials, 26(27) (2005), pp. 5474–5491.CrossRefPubMedGoogle Scholar
  10. 10.
    H.P. Greisler et al., Surgery, 112(2) (1992), pp. 244–255.PubMedGoogle Scholar
  11. 11.
    K.M. Chrobak, D.R. Potter, and J. Tien, Microvascular Research, 71(3) (2006), pp. 185–196.CrossRefPubMedGoogle Scholar
  12. 12.
    S. Deville et al., Science, 27(5760) (2006), pp. 515–518.CrossRefADSGoogle Scholar
  13. 13.
    U.G.K. Wegst et al., Phil. Trans. R. Soc. A, 368 (2010), pp. 2099–2121.CrossRefPubMedADSGoogle Scholar
  14. 14.
    R.A.A Muzzarelli, Carbohydrate Polymers, 76 (2009), pp. 167–182.CrossRefGoogle Scholar
  15. 15.
    S.V. Madihally and H.W.T. Matthew, Biomaterials, 20 (1999), pp. 1133–1142.CrossRefPubMedGoogle Scholar
  16. 16.
    M.F. Ashby, Phil. Trans. R. Soc. A, 364 (2006), pp. 15–30.CrossRefPubMedMathSciNetADSGoogle Scholar
  17. 17.
    L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties (Cambridge, U.K.: Cambridge University Press, 1997).Google Scholar
  18. 18.
    N.E. Suyatma et al., J. Polym. Environ., 12 (2004), pp. 1–6.CrossRefGoogle Scholar
  19. 19.
    N. Cao, Y. Fu, and J. He, Food Hydrocolloids, 21 (2007), pp. 1153–1162.CrossRefGoogle Scholar
  20. 20.
    G. Fels, Journal of Applied Polymer Science, 8 (1964), pp. 1813–1824.CrossRefGoogle Scholar
  21. 21.
    J.M. Chupa et al., Biomaterials, 21 (2000), pp. 2315–2322.CrossRefPubMedGoogle Scholar
  22. 22.
    Y. Huang et al., Biomaterials, 26 (2005), pp. 7616–7627.CrossRefPubMedGoogle Scholar
  23. 23.
    J.L. Cuy et al., J. Biomed. Mater. Res., 67A (2003), pp. 538–547.CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • Nicholas W. Meghri
    • 1
  • Amalie E. Donius
    • 1
  • Benjamin W. Riblett
    • 1
  • Elizabeth J. Martin
    • 2
  • Alisa Morss Clyne
    • 3
  • Ulrike G. K. Wegst
    • 1
  1. 1.Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaUSA
  2. 2.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Department of Mechanical Engineering of Drexel UniversityPhiladelphiaUSA

Personalised recommendations