JOM

, Volume 62, Issue 6, pp 57–63 | Cite as

The anodization of aluminum for nanotechnology applications

Corrosion Overview

Abstract

In light of the ever-increasing demand for the development of an effective, inexpensive and technologically simple method, a naturally occurring self-organization of oxide nanopores during the anodization of aluminum has recently attracted a vast amount of research attention in the field of nanotechnology. This article gives a brief overview on some of the recent advances in the anodization of aluminum, focusing on the fabrication of highly ordered nanoporous anodic aluminum oxide. Conventional anodization, newly developed hard anodization, pulse anodization process, and generic approaches for the fabrication of three-dimensional pore structures with periodically modulated diameters are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Lohrengel, Mater. Sci. Eng. R, 11 (1993), pp. 243–294.CrossRefGoogle Scholar
  2. 2.
    H. Föll et al., Mater. Sci. Eng. R, 39 (2002), pp. 93–141.CrossRefGoogle Scholar
  3. 3.
    J.W. Diggle, T.C. Downie, and C.W. Goulding, Chem. Rev., 69 (1969), pp. 365–405.CrossRefGoogle Scholar
  4. 4.
    P.G. Sheasby and R. Pinner, The Surface Treatment and Finishing of Aluminum and Its Allays (Materials Park, OH and Stevenage, U.K.: ASM International and Finishing Publications Ltd., 2001).Google Scholar
  5. 5.
    G.D. Bengough and J.M. Stuart, U.K. patent 223,994 (1923).Google Scholar
  6. 6.
    F. Keller, M.S. Hunter, and D.L. Robinson, J. Electrochem. Soc., 100 (1953), pp. 411–419.CrossRefGoogle Scholar
  7. 7.
    S.R. Nicewarner-Peña et al., Science, 294 (2001), pp. 137–141.CrossRefPubMedADSGoogle Scholar
  8. 8.
    W. Lee et al., Angew. Chem. Int. Ed., 44 (2005), pp. 6050–6054.CrossRefGoogle Scholar
  9. 9.
    W. Lee et al., Chem. Mater., 17 (2005), pp. 3325–3327.CrossRefGoogle Scholar
  10. 10.
    W. Lee et al., Nature Nanotech., 3 (2008), pp. 402–407.CrossRefGoogle Scholar
  11. 11.
    Z. Huang et al., Nano Lett., 8 (2008), pp. 3046–3051.CrossRefPubMedADSGoogle Scholar
  12. 12.
    L. Liu et al., Angew. Chem. Int. Ed., 47 (2008), pp. 7004–7008.CrossRefGoogle Scholar
  13. 13.
    Z. Huang et al., J. Med. Devices, 1 (2007), pp. 79–83.CrossRefGoogle Scholar
  14. 14.
    D. Ding et al., Sens. Actuators B, 124 (2007), pp. 12–17.CrossRefGoogle Scholar
  15. 15.
    D. Gong et al., Biomed. Microdevices, 5 (2003), pp. 75–80.CrossRefGoogle Scholar
  16. 16.
    Z. Fan et al., Nature Mater., 8 (2009), pp. 648–653.CrossRefADSGoogle Scholar
  17. 17.
    H. Asoh et al., J. Electrochem. Soc., 148 (2001), pp. B152–B156.CrossRefGoogle Scholar
  18. 18.
    H. Masuda and K. Fukuda, Science, 268 (1995), pp. 1466–1468.CrossRefPubMedADSGoogle Scholar
  19. 19.
    H. Masuda and M. Satoh, Jpn. J. Appl. Phys., 35 (1996), pp. L126–L129.CrossRefADSGoogle Scholar
  20. 20.
    H. Masuda, E. Hasegawa, and S. Ono, J. Electrochem. Soc., 144 (1997), pp. L127–L130.CrossRefGoogle Scholar
  21. 21.
    A.P. Li et al., J. Appl. Phys., 84 (1998), pp. 6023–6026.CrossRefADSGoogle Scholar
  22. 22.
    F. Li, L. Zhang, and R.M. Metzger, Chem. Mater., 10 (1998), pp. 2470–2480.CrossRefGoogle Scholar
  23. 23.
    H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys., 37 (1998), pp. L1340–L1342.CrossRefADSGoogle Scholar
  24. 24.
    K. Nielsch et al., Nano Lett., 2 (2002), pp. 677–680.CrossRefADSGoogle Scholar
  25. 25.
    I. Vrublevsky et al., Appl. Surf. Sci., 227 (2004), pp. 282–292.CrossRefADSGoogle Scholar
  26. 26.
    J.P. O’sullivan and G.C. Wood, Proc. Roy. Soc. Lond. A, 317 (1970), pp. 511–543.CrossRefADSGoogle Scholar
  27. 27.
    K. Ebihara, H. Takahashi, and M. Nagayama, J. Met. Finish. Soc, 34 (1983), pp. 548–553.Google Scholar
  28. 28.
    M.S. Hunter and P. Fowle, J. Electrochem. Soc., 101 (1954), pp. 481–485.CrossRefGoogle Scholar
  29. 29.
    M.S. Hunter and P. Fowle, J. Electrochem. Soc., 101 (1954), pp. 514–519.CrossRefGoogle Scholar
  30. 30.
    V.P. Parkhutik and V.I. Shershulsky, J. Phys. D: Appl. Phys., 25 (1992), pp. 1258–1263.CrossRefADSGoogle Scholar
  31. 31.
    G.D. Sulka and K.G. Parkoia, Electrochim. Ada, 52 (2007), pp. 1880–1888.CrossRefGoogle Scholar
  32. 32.
    G. Paolini et al., J. Electrochem. Soc., 112 (1965), pp. 32–38.CrossRefGoogle Scholar
  33. 33.
    S. Ono et al., J. Electrochem. Soc., 151 (2004), pp. B473–B478.CrossRefGoogle Scholar
  34. 34.
    O. Jessensky, F. Müller, and U. Gösele, Appl. Phys. Lett., 72 (1998), pp. 1173–1175.CrossRefADSGoogle Scholar
  35. 35.
    T.P. Hoar and N.F. Mott, J. Phys. Chem. Solids, 9 (1959), pp. 97–99.CrossRefADSGoogle Scholar
  36. 36.
    Z. Su and W. Zhou, Adv. Mater., 20 (2008), pp. 3663–3667.CrossRefGoogle Scholar
  37. 37.
    C. Cherkl and J. Siejka, J. Electrochem. Soc., 120 (1972), pp. 784–791.CrossRefGoogle Scholar
  38. 38.
    J. Siejka and C. Ortega, J. Electrochem. Soc., 124 (1977), pp. 883–891.CrossRefGoogle Scholar
  39. 39.
    G.E. Thompson, Thin Solid Rims, 297 (1997), pp. 192–201.CrossRefADSGoogle Scholar
  40. 40.
    Z. Wu, C. Richter, and L. Menon, J. Electrochem. Soc., 154 (2007), pp. E8–E12.CrossRefGoogle Scholar
  41. 41.
    P. Skeldon et al., Electrochem. Solid-State Lett., 9 (2006), pp.B47–B51.CrossRefGoogle Scholar
  42. 42.
    S.J. Garcia-Vergara et al., Electrochim. Ada, 52 (2006), pp. 681–687.CrossRefGoogle Scholar
  43. 43.
    J.E. Houser and K.R. Hebert, Nature Mater., 8 (2009), pp. 415–420.CrossRefADSGoogle Scholar
  44. 44.
    R. Hillebrand et al., ACS Nano, 2 (2008), pp. 913–920.CrossRefPubMedMathSciNetGoogle Scholar
  45. 45.
    H. Masuda et al., Appl. Phys. Lett., 71 (1997), pp. 2770–2772.CrossRefADSGoogle Scholar
  46. 46.
    H. Masuda et al., Adv. Mater., 13 (2001), pp. 189–192.CrossRefGoogle Scholar
  47. 47.
    C.Y Liu, A. Datta, and Y.L. Wang, Appl. Phys. Lett., 78 (2001), pp. 120–122.CrossRefADSGoogle Scholar
  48. 48.
    Z. Sun and H.K. Kim, Appl. Phys. Lett., 81 (2002), pp. 3458–3460.CrossRefADSGoogle Scholar
  49. 49.
    S. Fournier-Bidoz et al., Adv. Mater., 16 (2004), pp. 2193–2196.CrossRefGoogle Scholar
  50. 50.
    W. Lee et al., Small, 2 (2006), pp. 978–982.CrossRefPubMedGoogle Scholar
  51. 51.
    S. Shingubara et al., Electrochem. Solid-State Lett., 7 (2004), pp. E15–E17.CrossRefGoogle Scholar
  52. 52.
    S.-Z. Chu et al., Adv. Mater., 17 (2005), pp. 2115–2119.CrossRefGoogle Scholar
  53. 53.
    S. Ono, M. Saito, and H. Asoh, Electrochim. Ada, 51 (2005), pp. 827–833.CrossRefGoogle Scholar
  54. 54.
    N. Sato, Eledrochim. Ada, 16 (1971), pp. 1683–1692.Google Scholar
  55. 55.
    W. Lee et al., Nature Mater., 5 (2006), pp. 741–747.CrossRefADSGoogle Scholar
  56. 56.
    E. Lichtenberger-Bajza, A. Domony, and P. Csokan, Werkstoffe. Karros., 11 (1960), pp. 701–707.CrossRefGoogle Scholar
  57. 57.
    P. Csokán, Metalloberfläche, 15 (1961), pp. B49–B53.Google Scholar
  58. 58.
    W. Lee, K. Nielsch, and U. Gösele, Nanotechnology, 18 (2007), 475713.CrossRefADSGoogle Scholar
  59. 59.
    K. Schwirn et al., ACS Nano, 2 (2008), pp. 302–310.CrossRefPubMedGoogle Scholar
  60. 60.
    K. Schwirn, “Harte Anodisation von Aluminium mit Verdunnter Schwefelaure” (Ph.D. Dissertation, Martin-Luther-Universitat Halle-Wittenberg, 2008).Google Scholar
  61. 61.
    Y. Li et al., Nanotechnology, 17 (2006), pp. 5101–5105.CrossRefADSGoogle Scholar
  62. 62.
    W. Lee, J.-C. Kim, and U. Gösele, Adv. Fund. Mater., 20 (2010), pp. 21–27.CrossRefGoogle Scholar
  63. 63.
    W. Lee et al., Nature Nanotech., 3 (2008), pp. 234–239.CrossRefGoogle Scholar
  64. 64.
    W. Lee, R. Scholz, and U. Gösele, Nano Lett., 8 (2008), pp. 2155–2160.CrossRefPubMedADSGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  1. 1.Center for NanometrologyKorea Research Institute of Standards and Science (KRISS)YuseongKorea
  2. 2.Department of Nano ScienceUniversity of Science and TechnologyDaejonKorea

Personalised recommendations