JOM

, Volume 62, Issue 4, pp 35–43 | Cite as

Silicon and germanium nanowires: Growth, properties, and integration

  • S. Tom Picraux
  • Shadi A. Dayeh
  • Pradeep Manandhar
  • Daniel E. Perea
  • Sukgeun G. Choi
Low-dimensional Nanomaterials Overview

Abstract

Semiconducting nanowires are an area of widespread interest in nanomaterials research because of the ability to fabricate one-dimensional structures with tailored functionalities not available in bulk materials. Silicon and germanium nanowires have received particular attention because of the important role played by these materials systems in contemporary microelectronics and their potential for applications ranging from novel electronic devices to molecular level sensing and to solar energy harvesting. This paper provides an overview of the widely used vapor-liquid-solid technique for nanowire growth and its application to our recent silicon and germanium nanowire studies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Thelander et al., Materials Today, 9 (2006), p. 28.CrossRefGoogle Scholar
  2. 2.
    S.A. Dayeh, Semiconductor Science and Technology, 25 (2010), p. 024004.CrossRefADSGoogle Scholar
  3. 3.
    D.J. Sirbuly et al., Proc. Nati. Acad. Sci., 102 (2005), p. 7800.CrossRefADSGoogle Scholar
  4. 4.
    Y. Li et al., Materials Today, 9(10) (2006), p. 18.CrossRefGoogle Scholar
  5. 5.
    Z. Li et al., Nano Lett., 4 (2004), p. 245.CrossRefADSGoogle Scholar
  6. 6.
    G. Zheng et al., Nature Biotech., 23 (2005), p. 1294.CrossRefGoogle Scholar
  7. 7.
    L. Tsakalakos et al., Appi. Phys. Lett., 91 (2007), p. 33117.CrossRefGoogle Scholar
  8. 8.
    B.M. Kayes, H.A. Atwater, and N.S. Lewis, J. Appi. Phys., 97 (2005), p. 114302.CrossRefADSGoogle Scholar
  9. 9.
    A.I. Hochbaum et al., Nature, 451 (2008), p. 163.CrossRefPubMedADSGoogle Scholar
  10. 10.
    A.I. Boukai et al., Nature, 451 (2008), p. 168.CrossRefPubMedADSGoogle Scholar
  11. 11.
    CK. Chan et al., Nature Nanotech., 3 (2008), p. 31.CrossRefADSGoogle Scholar
  12. 12.
    N. Wang, Y. Cal, and R.Q. Zhang, Mater. Sci. and Eng., R60 (2008), p. 1.Google Scholar
  13. 13.
    N. Skold et al., Nano Lett., 5 (2005), p. 1943.CrossRefPubMedADSGoogle Scholar
  14. 14.
    ZI. Wang, Adv. Mater., 19 (2007), p. 889.CrossRefGoogle Scholar
  15. 15.
    M.R Anantram and F. Leonard, Reports on Progress in Phys., 69 (2006), p. 507.CrossRefADSGoogle Scholar
  16. 16.
    S.B. Sinnott and R. Andrews, Critical Reviews in Solid State and Materials Sciences, 26(3) (2001), pp. 45–249.CrossRefGoogle Scholar
  17. 17.
    R.S. Wagner and WC. Ellis, Appi. Phys. Lett., 4 (1964), p. 89.CrossRefADSGoogle Scholar
  18. 18.
    H. Adhikari et al., ACS Nano, 1 (2007), p. 415.CrossRefPubMedGoogle Scholar
  19. 19.
    V. Schmidt et al., Adv. Mater., 21 (2009), pp. 2681–2702.CrossRefGoogle Scholar
  20. 20.
    J.B. Hannon et al., Nature, 440 (2006), p. 69.CrossRefPubMedADSGoogle Scholar
  21. 21.
    J. Dailey et al., J. Appi. Phys., 96 (2004), p. 7556.CrossRefADSGoogle Scholar
  22. 22.
    E.I. Givargizov, J. Crys. Growth, 31 (1975), p. 20.CrossRefADSGoogle Scholar
  23. 23.
    S.G. Choi et al., unpublished work (2010).Google Scholar
  24. 24.
    P. Madras, E. Dailey, and J. Drucker, Nano Lett., 9 (2009), p. 3826.CrossRefPubMedGoogle Scholar
  25. 25.
    D. Wang, B.A. Sheriff, and J.R. Heath, Small, 2 (2006), p. 1153.CrossRefPubMedGoogle Scholar
  26. 26.
    W. Lu et al., Proc. Natl. Acad. Sci., 102 (2005), p. 10046.CrossRefPubMedADSGoogle Scholar
  27. 27.
    J.G. Swadener and ST. Picraux, J. Appi. Phys., 105 (2009), p. 044310.CrossRefADSGoogle Scholar
  28. 28.
    WD. Nix, MRS Bulletin, 34 (2009), p. 82.Google Scholar
  29. 29.
    Y.Y. Wu, R. Fan, and P. Yang, Nano Lett., 2 (2002), p. 83.CrossRefADSGoogle Scholar
  30. 30.
    T.E. Clark et al., Nano Lett., 8 (2008), p. 1246.CrossRefPubMedADSGoogle Scholar
  31. 31.
    S.A. Dayeh, P. Manandhar, and ST. Picraux, unpublished work (2010).Google Scholar
  32. 32.
    D.E. Perea et al., Nature Nanotech, 4 (2009), p. 315.CrossRefADSGoogle Scholar
  33. 33.
    E. Tutuc, et al., Nano Lett., 6 (2006), p. 2070.CrossRefPubMedADSGoogle Scholar
  34. 34.
    B. Tian et al., Nature, 449 (2007), p. 885.CrossRefPubMedADSGoogle Scholar
  35. 35.
    Ol. Muskins et al., Nano Lett., 8 (2008), p. 2638.CrossRefADSGoogle Scholar
  36. 36.
    J. Appenzeller et al., IEEE Trans. Elect. Devices, 55 (2008), p. 2827.CrossRefADSGoogle Scholar
  37. 37.
    S. Ingole et al., J. Appi. Phys., 103 (2008), p. 104302.CrossRefADSGoogle Scholar
  38. 38.
    S. Ingole et al., IEEE Trans. Elect. Devices, 55 (2008), p. 2931.CrossRefADSGoogle Scholar
  39. 39.
    F. Leonard et al., Phys. Rev. Lett., 102, (2009) p. 106805.CrossRefPubMedADSGoogle Scholar
  40. 40.
    R. Rosario et al., J. Phys. Chem. B Letters, 108 (2004), p. 12640.Google Scholar
  41. 41.
    N.A. Melosh et al., Science, 300 (2003), p. 112.CrossRefPubMedADSGoogle Scholar
  42. 42.
    M. Li et al., Nature Nanotech., 3 (2008), p. 88.CrossRefADSGoogle Scholar
  43. 43.
    S. Ingole et al., Appi. Phys. Lett., 91 (2007), p. 033106.CrossRefADSGoogle Scholar
  44. 44.
    See, for example, P. Nguyen et al., Afano Left, 4 (2004), p. 651.ADSGoogle Scholar
  45. 45.
    M.T. Bjork et al., Appi. Phys. Lett., 90 (2007), p. 142110.CrossRefADSGoogle Scholar
  46. 46.
    Y Sierra-Sastre et al., J. Amer. Chem. Soc., 130 (2008), p. 10488.CrossRefGoogle Scholar
  47. 47.
    S.A. Dayeh et al., submitted to Nature (2010).Google Scholar
  48. 48.
    P. Manandhar and ST. Picraux, submitted to Nano Letters (2010).Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • S. Tom Picraux
    • 1
    • 2
  • Shadi A. Dayeh
    • 1
  • Pradeep Manandhar
    • 1
  • Daniel E. Perea
    • 1
  • Sukgeun G. Choi
    • 1
  1. 1.Center for Integrated Nanotechnologies (CINT)Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Arizona State UniversityTempeUSA

Personalised recommendations