, Volume 62, Issue 1, pp 24–30 | Cite as

Laser shocking of materials: Toward the national ignition facility

  • M. A. MeyersEmail author
  • B. A. Remington
  • B. Maddox
  • E. M. Bringa
Materials for Crashworthiness and Defense Overview


In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. This technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 107–108 s−1 and resolving details of the kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.


Phase Transition Molecular Dynamic Molecular Dynamic Simulation Dislocation Density Dynamic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.A. Haynam et al., Appl. Optics, 46 (2007), p. 3276.CrossRefADSGoogle Scholar
  2. 2.
    G.A. Askarion and E.M. Morez, JETP Lett., 16 (1963), p. 1638.Google Scholar
  3. 3.
    N.C. Andelholm, Appl. Phys. Lett., 16 (1970), p. 113.CrossRefADSGoogle Scholar
  4. 4.
    A.H. Clauer et al., Shock Waves and High-Strain-Rate Phenomena in Metals, ed. M.A. Meyers and L.E. Murr (New York: Plenum Press, 1981), pp. 675–702.Google Scholar
  5. 5.
    R.C. Davidson et al., Frontiers in High Energy Density Physics: The X-Games of Contemporary Science, (Washington, D.C.: The National Academies Press, 2003).Google Scholar
  6. 6.
    C.S. Smith, Trans. AIME, 212 (1958), p. 574.Google Scholar
  7. 7.
    B.A. Remington et al., Met. Mat. Trans., 35A (2004), pp. 2587–2608.CrossRefGoogle Scholar
  8. 8.
    H.S. Park et al., J. of Phys.: Conf. Sen, 112 (2008), 042024.CrossRefADSGoogle Scholar
  9. 9.
    R.F. Smith et al., Phys. Plasmas, 14 (2007), 057105.CrossRefADSGoogle Scholar
  10. 10.
    M.N. Jarmakani et al., Acta Mat, 56 (2008), p. 5584.CrossRefGoogle Scholar
  11. 11.
    M.A. Meyers, Scripta Met, 12 (1978), p. 21.CrossRefGoogle Scholar
  12. 12.
    E.M. Bringa et al., Nature Materials, 5 (2006), p. 805.CrossRefPubMedADSGoogle Scholar
  13. 13.
    B.L. Holian and P.S. Lomdahl, Science, 2890 (1998), p. 2085.CrossRefADSGoogle Scholar
  14. 14.
    B.Y. Cao, E.M. Bringa, and M.A. Meyers, Met. Mat. Trans., A38 (2007), p. 1073.Google Scholar
  15. 15.
    LE. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, ed. M.A. Meyers and L.E. Murr (Newark: Plenum Press, 1981), p. 607.Google Scholar
  16. 16.
    NX. Bourne, J.C.F. Millet, and G.T. Gray, J. Matls. Sci., 44 (2009), pp. 3319–3343.CrossRefADSGoogle Scholar
  17. 17.
    L.E. Murr and D. Kuhlmann-Wilsdorf, Acta Met, 26 (1978), p. 847.CrossRefGoogle Scholar
  18. 18.
    M.A. Meyers et al., Dislocations in Solids, ed. J.R Hirth and L.P. Kubin (Maryland Heights, MO: Elsevier, 2009), pp. 94–197.Google Scholar
  19. 19.
    J.S. Wark et al., Phys. Rev., B40 (1989), p. 5705.ADSGoogle Scholar
  20. 20.
    J.S. Wark et al., SCCM-2007, Vol. 955 (2007), p. 1345.Google Scholar
  21. 21.
    J. Hawreliak et al., Phys. Rev. B, 78 (2008), 220101 (R).CrossRefADSGoogle Scholar
  22. 22.
    D. Milathianaki and J.M. McNaney et al., Rev. Sci. Instrum., 80 (2009), 093904.CrossRefPubMedGoogle Scholar
  23. 23.
    H.S. Park et al., Phys. Rev. Lett., submitted (2009).Google Scholar
  24. 24.
    H.S. Park et al., Phys. Plasmas, submitted (2009).Google Scholar
  25. 25.
    B.A. Remington et al., Mat. Sci. Tech., 22 (2006), p. 474.CrossRefGoogle Scholar
  26. 26.
    E.I. Moses et al., Phys. Plasmas, 16 (2009), 041006.CrossRefADSGoogle Scholar
  27. 27.
    Lawrence Livermore National Labs Report, LLNL-AR-412551 (2009).Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • M. A. Meyers
    • 1
    Email author
  • B. A. Remington
    • 2
  • B. Maddox
    • 3
  • E. M. Bringa
    • 3
  1. 1.University of CaliforniaSan DiegoUSA
  2. 2.Lawrence Livermore National Lab.LivermoreUSA
  3. 3.Universidad Nacional de CuzoCuzoArgentina

Personalised recommendations