Advertisement

JOM

, Volume 61, Issue 12, pp 45–52 | Cite as

Strain heterogeneity and damage nucleation at grain boundaries during monotonic deformation in commercial purity titanium

  • T. R. Bieler
  • M. A. Crimp
  • Y. Yang
  • L. Wang
  • P. Eisenlohr
  • D. E. Mason
  • W. Liu
  • G. E. Ice
Open Access
Near-Grain-Boundary Transitions Research Summary

Abstract

Heterogeneous strain was analyzed in polycrystalline, commercial-purity titanium using many experimental techniques that provide information about microstructure, dislocation arrangement, grain orientation, orientation gradients, surface topography, and local strain gradients. The recrystallized microstructure with 50–200 µm grains was extensively characterized before and after deformation using 4-point bending to strains between 2% and 15%. Extremely heterogeneous deformation occurred along some grain boundaries, leading to orientation gradients exceeding 10° over 10–20 µm. Patches of highly characterized micro-structure were modeled using crystal plasticity finite element (CPFE) analysis to simulate the deformation to evaluate the ability of the CPFE model to capture local deformation processes. Damage nucleation events were identified that are associated with twin interactions with grain boundaries. Progress toward identifying fracture initiation criteria based upon slip and twin interactions with grain boundaries is illustrated with related CPFE simulations of deformation in a TiAl alloy.

Keywords

Strain Gradient Grain Orientation Commercial Purity TiAl Alloy Orientation Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.A. Lebensohn and C.N. Tome, Acta Metall. Mater., 41(9) (1993), pp. 2611–2624.CrossRefGoogle Scholar
  2. 2.
    I. Karaman et al., Acta Mater., 48(9) (2000), pp. 2031–2047.CrossRefGoogle Scholar
  3. 3.
    Z. Yao and R.M. Wagoner, Acta Metall. Mater., 41(2) (1993), pp. 451–468.CrossRefGoogle Scholar
  4. 4.
    F Delaire, J.L. Raphanel, and C. Rey, Acta Mater., 48(5) (2000), pp. 1075–1087.CrossRefGoogle Scholar
  5. 5.
    D. Raabe et al., Acta Metall. Mater., 49 (2001), pp. 3433–3441.Google Scholar
  6. 6.
    RR. Dawson, D.P Mika, and N.R. Barton, Scripta Mater., 47(10) (2002), pp. 713–717.CrossRefGoogle Scholar
  7. 7.
    J.D. Clayton and D.L. McDowell, Mech. Mater., 36(9) (2004), pp. 799–847.Google Scholar
  8. 8.
    S. Hao et al., Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1865–1908.zbMATHCrossRefGoogle Scholar
  9. 9.
    A. Ma, F. Roters, and D. Raabe, Acta Materialia, 54(8) (2006), pp. 2181–2194.CrossRefGoogle Scholar
  10. 10.
    K.S. Cheong and E.P. Bussso, J. Mechanics Physics Solids, 54 (2006), pp. 671–689.zbMATHCrossRefADSGoogle Scholar
  11. 11.
    J.A. Querln, J.A. Schneider, and M.F Horstemeyer, Materials Science and Engineering A, 463(1–2) (2007), pp. 101–106.Google Scholar
  12. 12.
    T.R. Bieler, RD. Nicolaou, and Si. Semiatin, Metallurgical and Materials Transactions A, 36A(1) (2005), pp. 129–140.CrossRefADSGoogle Scholar
  13. 13.
    T.R. Bieler, R.L Goetz, and Si. Semiatin, Mater. Sci. Eng., A405 (2005), pp. 201–213.Google Scholar
  14. 14.
    S. Ankem et al., Progress in Materials Science, 51 (2006), pp. 632–709.CrossRefGoogle Scholar
  15. 15.
    B. Wagenknecht, D. Llbiran, S. Poon, and K. Sztykiel, “In-sltu Four-Point Bending Apparatus for Scanning Electron Microscopes” (Senior Design Project, Mechanical Engineering, Michigan State University, April 2008).Google Scholar
  16. 16.
    B.C. Larson et al., Nature, 415 (2002), pp. 887–890.CrossRefPubMedADSGoogle Scholar
  17. 17.
    W. Liu et al., Ultramicroscopy, 103 (2005), pp. 199–204.CrossRefPubMedGoogle Scholar
  18. 18.
    R.I. Barabash et al., Applied Physics Letters, 79 (2001), pp. 749–751.CrossRefADSGoogle Scholar
  19. 19.
    R.I. Barabash, G.E. Ice, and F.J. Walker, J. Applied Physics, 93 (2003), pp. 1457–1464.CrossRefADSGoogle Scholar
  20. 20.
    X. Wu et al., Acta Materialia, 55 (2007), pp. 423–432.CrossRefGoogle Scholar
  21. 21.
    M.A. Crimp, Microscopy Research and Technique, 69 (2006), pp. 374–381.CrossRefPubMedGoogle Scholar
  22. 22.
    B. El-Dasher et al., Analysis of EBSD Data (L17), retrieved from ftp site neon.materials.cmu.edu/rollett/27750/27750.html (2009).
  23. 23.
    J. Luster and M.A. Morris, Metall. Mater. Trans. A, 26 (1995), p. 1745.CrossRefGoogle Scholar
  24. 24.
    L Wang et al., Metall. Mater. Trans., In press.Google Scholar
  25. 25.
    B.A. Simkin, M.A. Crimp, and T.R. Bieler, Scripta Materialia, 49(2) (2003), pp. 149–154.CrossRefGoogle Scholar
  26. 26.
    T.R. Bieler et al., J. Engineering and Materials Technology, 130 (2008), 021012.CrossRefGoogle Scholar
  27. 27.
    T.R. Bieler et al., International Journal of Plasticity, 25 (2009), pp. 1655–1683.zbMATHCrossRefGoogle Scholar
  28. 28.
    D.E. Mason, unpublished research (2009).Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • T. R. Bieler
    • 1
  • M. A. Crimp
    • 1
  • Y. Yang
    • 1
  • L. Wang
    • 1
  • P. Eisenlohr
    • 2
  • D. E. Mason
    • 3
  • W. Liu
    • 4
  • G. E. Ice
    • 5
  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  2. 2.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  3. 3.Albion CollegeAlbionUSA
  4. 4.Advanced Photon Source at Argonne National LaboratoryArgonneUSA
  5. 5.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations