, Volume 61, Issue 9, pp 31–34 | Cite as

Magnesium as a biodegradable and bioabsorbable material for medical implants

  • Harpreet S. Brar
  • Manu O. Platt
  • Malisa Sarntinoranont
  • Peter I. Martin
  • Michele V. ManuelEmail author
Biomedical Materials and Devices Overview


For many years, stainless steel, cobalt-chromium, and titanium alloys have been the primary biomaterials used for load-bearing applications. However, as the need for structural materials in temporary implant applications has grown, materials that provide short-term structural support and can be reabsorbed into the body after healing are being sought. Since traditional metallic biomaterials are typically biocompatible but not biodegradable, the potential for magnesium-based alloys in biomedical applications has gained more interest. This paper summarizes the history and current status of magnesium as a bioabsorbable implant material. Also discussed is the development of a magnesium-zinc-calcium alloy that demonstrates promising degradation behavior.


Simulated Body Fluid UHMWPE Corrosion Layer Lower Degradation Rate Advance Engineer Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Park and Y.K. Kim, Biomaterials: Principles and Applications, ed. J.B. Park and J.D. Bronzino (Boca Raton: CRC Press, 2003), pp. 1–20.Google Scholar
  2. 2.
    H. Hamid and J. Coltart, McGill Journal of Medicine, 10(2) (2007), pp. 105–111.PubMedGoogle Scholar
  3. 3.
    P. Peeters et al., Journal of Endovascular Specialists, 12 (2005), pp. 1–5.Google Scholar
  4. 4.
    J. Heller, R.V. Sparer, and G. Zentner, Biodegradable Polymers as Drug Delivery Systems, ed. M. Chasin and R.S. Langer (New York: M. Dekker, 1990), pp. 121–161.Google Scholar
  5. 5.
    O.M. Bostman, Journal of Bone and Joint Surgery, 73B(4) (1991), p. 682.Google Scholar
  6. 6.
    J. Levesque et al., Advanced Materials & Processes, 162(9) (2004), pp. 45–48.Google Scholar
  7. 7.
    J. Vormann, Mol Aspects Med, 24(1–3) (2003), pp. 27–37.PubMedCrossRefGoogle Scholar
  8. 8.
    R.C. Zeng et al., Advanced Engineering Materials, 10(8) (2008), pp. B3–B14.CrossRefADSGoogle Scholar
  9. 9.
    D. Upadhyay et al., Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 432(1–2) (2006), pp. 1–11.Google Scholar
  10. 10.
    P.A. Dearnley, Surface & Coatings Technology, 198(1–3) (2005), pp. 483–490.CrossRefGoogle Scholar
  11. 11.
    B. Heublein et al., Heart, 89 (2003), pp. 651–656.PubMedCrossRefGoogle Scholar
  12. 12.
    D. MacLeod and J. MacLeod, British Journal of Anaesthesia, 83(6) (1999), pp. 972–973.PubMedGoogle Scholar
  13. 13.
    R.J. Elin, Clinical Chemistry, 33(11) (1987), pp. 1965–1970.PubMedGoogle Scholar
  14. 14.
    A. Lambotte, Bull. Mem. Soc. Nat. Chir., 28 (1932), pp. 1325–1334.Google Scholar
  15. 15.
    M.P. Staiger et al., Biomaterials, 27(9) (2006), pp. 1728–1734.PubMedCrossRefGoogle Scholar
  16. 16.
    V.V. Troitskii and D.N. Tsitrin, Khirurgiia, 8 (1944), pp. 41–44.Google Scholar
  17. 17.
    E.D. McBride, Journal of the American Medical Association, 111 (1938), pp. 2464–2466.Google Scholar
  18. 18.
    F. Witte et al., Biomaterials, 26(17) (2005), pp. 3557–3563.PubMedCrossRefGoogle Scholar
  19. 19.
    H. Zreiqat et al., Journal of Biomedical Materials Research, 62(2) (2002), pp. 175–184.PubMedCrossRefGoogle Scholar
  20. 20.
    L. Li, J. Gao, and Y. Wang, Surface and Coatings Technology, 185(1) (2004), pp. 92–98.CrossRefMathSciNetGoogle Scholar
  21. 21.
    N.E.L. Saris et al., Clinica Chimica Acta, 294(1–2) (2000), pp. 1–26.CrossRefGoogle Scholar
  22. 22.
    G.-L. Song and S.-Z. Song, Acta Physico-Chimica, 22(10) (2006), pp. 1222–1226.Google Scholar
  23. 23.
    G. Song, Corrosion Science, 49(4) (2007), pp. 1696–1701.CrossRefADSGoogle Scholar
  24. 24.
    C.D. Reyes, T.A. Petrie, and A.J. Garcia, Journal of Cellular Physiology, 217(2) (2008), pp. 450–458.PubMedCrossRefGoogle Scholar
  25. 25.
    T.A. Petrie et al., Journal of Cellular and Molecular Medicine (August 2008), doi 10.1111/j.1582-4934.2008.00476.xGoogle Scholar
  26. 26.
    M.O. Platt et al., Journal of Cellular Physiology (18 June 2009), doi: 10.1002/jcp.21854.Google Scholar
  27. 27.
    R.M. Salasznyk et al., Journal of Biomedicine & Biotechnology, 2004(1) (2004), pp. 24–34.CrossRefGoogle Scholar
  28. 28.
    D.Y. Li et al., Nature, 393(6682) (1998), pp. 276–280.PubMedCrossRefADSGoogle Scholar
  29. 29.
    B.A. Shaw, ASM Handbook—Corrosion: Fundamentals, Testing, and Protection (Materials Park, OH: ASM International, 2003), pp. 692–696.Google Scholar
  30. 30.
    C.J. Smithells, E.A. Brandes, and G.B. Brook, Smithells’ Metals Reference Book. 7th ed. (London: Butterworths, 1992), 1 v. (various pages).Google Scholar
  31. 31.
    C.S. Roberts, Magnesium and its Alloys, Wiley Series on the Science and Technology of Materials (New York: Wiley, 1960).Google Scholar
  32. 32.
    T.D. Luckey and B. Venugopal, Metal Toxicity in Mammals (New York: Plenum Press, 1977).Google Scholar
  33. 33.
    M.B. Kannan and R.K.S. Raman, Biomaterials, 29(15) (2008), pp. 2306–2314.PubMedCrossRefGoogle Scholar
  34. 34.
    Y.C. Xin et al., Journal of Materials Research, 22(7) (2007), pp. 2004–2011.CrossRefADSGoogle Scholar
  35. 35.
    G.L. Song and A. Atrens, Advanced Engineering Materials, 1(1) (1999), pp. 11–33.CrossRefGoogle Scholar
  36. 36.
    I. Engelberg and J. Kohn, Biomaterials, 12(3) (1991), pp. 292–304.PubMedCrossRefGoogle Scholar
  37. 37.
    J. Black, Orthopaedic Biomaterials in Research and Practice (New York: Churchill Livingstone, 1988).Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Harpreet S. Brar
    • 1
  • Manu O. Platt
    • 2
  • Malisa Sarntinoranont
    • 3
  • Peter I. Martin
    • 1
  • Michele V. Manuel
    • 1
    Email author
  1. 1.Materials Science and Engineering DepartmentUniversity of FloridaGainesvilleUSA
  2. 2.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech and Emory UniversityAtlantaUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations