JOM

, Volume 61, Issue 7, pp 61–67 | Cite as

Metallic materials for structural applications beyond nickel-based superalloys

  • M. Heilmaier
  • M. Krüger
  • H. Saage
  • J. Rösler
  • D. Mukherji
  • U. Glatzel
  • R. Völkl
  • R. Hüttner
  • G. Eggeler
  • Ch. Somsen
  • T. Depka
  • H. -J. Christ
  • B. Gorr
  • S. Burk
Refractory Metals Research / Research Summary

Abstract

This paper reviews our current research activities on developing new multiphase metallic materials for structural applications with a temperature capability beyond 1,200°C. Two promising material systems have been chosen: first, alloys in the system Mo-Si-B which have demonstrated potential due to their high melting point of around 2,000°C and due to the formation of a protecting borosilicate glass layer on the surface at temperatures exceeding 900°C; and second, novel Co-Re-based alloys which have been chosen as a model system for complete miscibility between the elements cobalt and rhenium, offering the possibility of continuous increases of the melting point of the alloy through rhenium additions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Cao and T.M. Pollock, Metall. Mater. Trans. A, 39A(1) (2008), pp. 39–49.CrossRefADSGoogle Scholar
  2. 2.
    F. Mücklich, N. Ilic, and K. Woll, Intermetallics, 16(5) (2008), pp. 593–608.CrossRefGoogle Scholar
  3. 3.
    J. Sato et al., Science, 312 (2006), pp. 90–91.PubMedCrossRefADSGoogle Scholar
  4. 4.
    A. Suzuki and T.M. Pollock, Acta Mater., 56(6) (2008), pp. 1288–1297.CrossRefGoogle Scholar
  5. 5.
    M. Wenderoth et al., Intermetallics, 15(4) (2007), pp. 539–549.CrossRefGoogle Scholar
  6. 6.
    Y. Yamabe-Mitarai et al., JOM, 56(9) (2004), pp. 34–39.CrossRefGoogle Scholar
  7. 7.
    B.P. Bewlay et al., MRS Bulletin 28(9) (2003), pp. 646–653.Google Scholar
  8. 8.
    N. Sekido et al., J. All. Comp., 425(1–2) (2006), pp. 223–229.CrossRefGoogle Scholar
  9. 9.
    P. Jéhanno et al., Metall. Mater. Trans., 36A(3) (2005), pp. 515–523.CrossRefGoogle Scholar
  10. 10.
    D.M. Dimiduk and J.H. Perepezko, MRS Bulletin, 28(9) (2003), pp. 639–645.Google Scholar
  11. 11.
    J.H. Schneibel et al., Metall. Mater. Trans., 36A(3) (2005), pp. 525–531.CrossRefGoogle Scholar
  12. 12.
    K. Yoshimi et al., Intermetallics, 11(8) (2003), pp. 787–794.CrossRefGoogle Scholar
  13. 13.
    M. Krüger et al., Intermetallics 16(7) (2008), pp. 933–941.CrossRefGoogle Scholar
  14. 14.
    P. Jéhanno et al., Scripta Mater. 55(6) (2006), pp. 525–531.CrossRefGoogle Scholar
  15. 15.
    E.M. Sokolovskaya et al., J. Less-Common Metals, 124 (1986), pp. L5–L7.CrossRefGoogle Scholar
  16. 16.
    J. Rösler, D. Mukherji, and T. Baranski, Adv. Eng. Mater., 9(10) (2007), pp. 876–881.CrossRefGoogle Scholar
  17. 17.
    T.A. Parthasarathy, M. Mendiratta, and D.M. Dimiduk, Acta Materialia, 50(7) (2002), pp. 1857–1866.CrossRefGoogle Scholar
  18. 18.
    D.M. Berczik, U.S. patent 5,595,616 (1997).Google Scholar
  19. 19.
    P. Jéhanno et al., Powder Met., 51(2) (2008), pp. 99–102.CrossRefGoogle Scholar
  20. 20.
    P. Jéhanno, M. Heilmaier, and H. Kestler, Intermetallics, 12(7–9) (2004), pp. 1005–1009.CrossRefGoogle Scholar
  21. 21.
    R. Völkl et al., Mat. Sci. Eng. A, 483–484 (2008), pp. 587–589.CrossRefGoogle Scholar
  22. 22.
    L. Northcott, Molybdenum (New York: Academic Press Inc., 1956).Google Scholar
  23. 23.
    N. Birks and G.H. Meier, Introduction to High Temperature Oxidation of Metals (London: E. Arnolds Ltd., 1983).Google Scholar
  24. 24.
    J.H. Perepezko, R. Sakidja, and S. Kim, Mat. Res. Soc. Symp. Proc., Vol. 646 (Warrendale, PA: Materials Research Society, 2001), N4.5.1.Google Scholar
  25. 25.
    S.R. Woodard et al., EU patent 1,382,700 B1 (2008).Google Scholar
  26. 26.
    S. Burk et al., “Effect of Zr on the High-Temperature Oxidation Behaviour of Mo-Si-B Alloys,” submitted to Oxidation of Metals (2009).Google Scholar
  27. 27.
    D.-B. Lee and G. Simkovich, Oxid. Met., 31 (1989), pp. 265–274.CrossRefGoogle Scholar
  28. 28.
    R. Sakidja and J.H. Perepezko, Metall. Mater. Trans., 36A(3) (2005), pp. 507–513.CrossRefGoogle Scholar
  29. 29.
    A. Hässner and W. Lange, Phys. Status Solidi, 8 (1965), p. 77.CrossRefGoogle Scholar
  30. 30.
    P. Jéhanno et al., Mater. Sci. Eng., A463 (2007), pp. 216–223.Google Scholar
  31. 31.
    M. Heilmaier et al., Mat. Res. Soc. Symp. Proc., Vol. 1128 (Warrendale, PA: Materials Research Society, 2009), p. U07–07.Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • M. Heilmaier
    • 1
  • M. Krüger
    • 2
  • H. Saage
    • 2
  • J. Rösler
    • 3
  • D. Mukherji
    • 3
  • U. Glatzel
    • 4
  • R. Völkl
    • 4
  • R. Hüttner
    • 4
  • G. Eggeler
    • 5
  • Ch. Somsen
    • 5
  • T. Depka
    • 5
  • H. -J. Christ
    • 6
  • B. Gorr
    • 6
  • S. Burk
    • 6
  1. 1.TU DarmstadtPhysical MetallurgyDarmstadtGermany
  2. 2.Institut für Werkstoff- und FügetechnikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  3. 3.TU BraunschweigInstitut für WerkstoffeBraunschweigGermany
  4. 4.Metallische WerkstoffeUniversität BayreuthBayreuthGermany
  5. 5.Institut für WerkstoffeRuhr-Universität BochumBochumGermany
  6. 6.Institut für WerkstofftechnikUniversität SiegenSiegenGermany

Personalised recommendations