, Volume 61, Issue 7, pp 44–50 | Cite as

Effect of water vapor on high-temperature oxidation of FeCr alloys

High-Temperature Oxidation-Resistant Alloys / Research Summary


The suppression of protective chromia scale formation in water vapor containing service environments limits in many cases the upper application temperature of high-Cr martensitic and ferritic steels. The present paper discusses the mechanisms which are responsible for this technologically important effect, using results of oxidation tests with two types of FeCr model alloys in Ar-O2, Ar-O2-H2O, and Ar(-H2)-H2O mixtures. The data shows that in atmospheres with a high ratio of water vapor to oxygen, Cr exhibits a higher tendency to become internally oxidized than in dry Ar-O2, or e.g. air. Contrary to previous studies which showed the presence of water vapor to affect transport processes in the scale and/or to enhance formation of volatile Cr species, the present results thus reveal that the presence of water vapor also affects the transport processes in the alloy, likely by incorporation of hydrogen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge, U.K.: Cambridge University Press, 2006).Google Scholar
  2. 2.
    C.T. Fujii and R.A. Meussner, J. Electrochemical Society, 111(11) (1964), pp. 1215–1221.CrossRefGoogle Scholar
  3. 3.
    Y. Ikeda and K. Nii, Transactions of National Research Institute for Metals, 26(1) (1984), pp. 52–62.Google Scholar
  4. 4.
    S.R.J. Saunders, M. Monteiro, and F. Rizzo, Progress in Materials Science, 53(5) (2008), pp. 775–837.CrossRefGoogle Scholar
  5. 5.
    W.J. Quadakkers et al., Materials at High Temperatures, 22(1/2) (2004), pp. 37–47.Google Scholar
  6. 6.
    J. Ehlers et al., Corrosion Science, 48 (2006), pp. 3428–3454.CrossRefGoogle Scholar
  7. 7.
    A. Rahmel and J. Tobolski, Corrosion Science, 5 (1965), pp. 333–346.CrossRefGoogle Scholar
  8. 8.
    A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum, 369–372 (2001), pp. 231–238.CrossRefGoogle Scholar
  9. 9.
    H. Asteman et al., Oxidation of Metals, 54(1/2) (2000), pp. 11–26.CrossRefGoogle Scholar
  10. 10.
    M. Michalik, M. Hänsel, and W.J. Quadakkers, Report Forschungszentrum Jülich, 67 (2007), ISBN 978-3-89336-486-2.Google Scholar
  11. 11.
    E.J. Opila et al., JOM, 58(1) (2006), pp. 22–28.CrossRefADSGoogle Scholar
  12. 12.
    M. Stanislowski, Report Forschungszentrum Jülich, 54 (2006), ISBN 3-89336-432-2.Google Scholar
  13. 13.
    D.J. Young and B.A. Pint, Oxidation of Metals, 66(3/4) (2006), pp. 137–153.CrossRefGoogle Scholar
  14. 14.
    M. Michalik et al., Materials at High Temperatures, 22(3/4) (2005), pp. 213–221.CrossRefGoogle Scholar
  15. 15.
    E. Essuman et al., Scripta Materialia, 57(9) (2007), pp. 845–848.CrossRefGoogle Scholar
  16. 16.
    C. Wagner, J. Electrochemical Society, 99(10) (1952), pp. 369–380.CrossRefGoogle Scholar
  17. 17.
    R.A. Rapp, Acta Metallurgica, 9(8) (1961), pp. 730–741.CrossRefGoogle Scholar
  18. 18.
    F. Gesmundo and F. Viani, Oxidation of Metals, 25(5) (1986), pp. 269–282.CrossRefGoogle Scholar
  19. 19.
    E. Essuman et al., Oxidation of Metals, 69(3) (2008), pp. 143–162.CrossRefGoogle Scholar
  20. 20.
    Z. Yang et al., Solid State Ionics, 176 (2005), pp. 1495–1503.CrossRefGoogle Scholar
  21. 21.
    K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, Materials at High Temperatures, 18(1) (2001), pp. 51–56.CrossRefGoogle Scholar
  22. 22.
    Y. Murata et al., Materials Science Forum, 522–523 (2006), pp. 147–154.CrossRefGoogle Scholar
  23. 23.
    K. Nagai et al., Materials Science Forum, 522–523 (2006), pp. 197–204.CrossRefGoogle Scholar
  24. 24.
    N. Otsuka, Y. Shida, and H. Fujikawa, Oxidation of Metals, 32(1) (1989), pp. 13–45.CrossRefGoogle Scholar
  25. 25.
    M.H.B. Ani et al., Proceedings of the European Corrosion Congress, Eurocorr 2007, (2007), Paper 183.Google Scholar
  26. 26.
    J. Ågren, Scripta Metallurgica, 20(11) (1986), pp. 1507–1510.CrossRefGoogle Scholar
  27. 27.
    N.K. Das et al., Corrosion Science, 51(4) (2009), pp. 908–913.CrossRefGoogle Scholar
  28. 28.
    A. Hansson, M. Montgomery, and M. Somers, Oxidation of Metals, 71 (2009), pp. 201–218.CrossRefGoogle Scholar
  29. 29.
    A. Galerie et al., Materials at High Temperatures, 21(4) (2005), pp. 105–112.CrossRefGoogle Scholar
  30. 30.
    R. Peraldi and B.A. Pint, Oxidation of Metals, 61(5) (2004), pp. 463–483.CrossRefGoogle Scholar
  31. 31.
    T. Ishitsuka, Y. Inoue, and H. Ogawa, Oxidation of Metals, 61(1) (2004), pp. 125–142.CrossRefGoogle Scholar
  32. 32.
    L. Tan et al., Corrosion Science, 50(7) (2008), pp. 2040–2046.CrossRefGoogle Scholar
  33. 33.
    J. Froitzheim et al., J. Power Sources, 178 (2008), pp. 163–173.CrossRefGoogle Scholar
  34. 34.
    B.A. Pint and I.G. Wright, Oxidation of Metals, 63(3) (2005), pp. 193–213.CrossRefGoogle Scholar
  35. 35.
    K. Kimura et al., 2nd ECCC Creep Conference, ed. I.A. Shibli and S.R. Holdsworth (Lancaster, PA: DEStech Publications, Inc., 2009), p. 935.Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Forschungszentrum JülichInstitute of Energy Research (IEF-2)JülichFRG

Personalised recommendations