JOM

, Volume 61, Issue 6, pp 72–75 | Cite as

Progress in Zno-based diluted magnetic semiconductors

Spintronic Materials and Devices Overview

Abstract

ZnO-based diluted magnetic semiconductors (DMS) have attracted a great deal of research attention and controversy over the past decade. The initial attention was sparked by the prediction of above-room-temperature ferromagnetism in Mn-doped ZnO by T. Dietl. This was followed by a surge of reports of ferromagnetism in thin film transition metal (TM)-doped ZnO. However, reported values of magnetic moments and Curie temperatures were inconsistent, which led to controversy over the origin of the observed ferromagnetism. In this paper we review a number of TM-doped ZnO-based DMS in order to clarify which materials are likely ferromagnetic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Dietl et al., Science, 287 (2000), p. 1019.PubMedCrossRefADSGoogle Scholar
  2. 2.
    S.J. Pearton et al., J. Appl. Phys., 93 (2003), p. 1.CrossRefADSGoogle Scholar
  3. 3.
    H. Ohno et al., Appl. Phys. Lett., 69 (1996), p. 363.CrossRefADSGoogle Scholar
  4. 4.
    P. Ball, Nature, 404 (2000), p. 918.PubMedCrossRefGoogle Scholar
  5. 5.
    N. Theodoropoulou et al., Phys. Rev. Lett., 89 (2002), p. 107203.PubMedCrossRefADSGoogle Scholar
  6. 6.
    G.T. Thaler et al., Appl. Phys. Lett., 80 (2002), p. 3964.CrossRefADSGoogle Scholar
  7. 7.
    M.E. Overberg et al., Appl. Phys. Lett., 79 (2001), p. 1312.CrossRefADSGoogle Scholar
  8. 8.
    S. Kolesnik, B. Dabrowski, and J. Mais, J. Appl. Phys., 95 (2004), p. 2582.CrossRefADSGoogle Scholar
  9. 9.
    M. Venkatesan et al., Phys. Rev. Lett., 93 (2004), p. 177206.PubMedCrossRefADSGoogle Scholar
  10. 10.
    N.H. Hong, V. Brize, and J. Sakai, Appl. Phys. Lett., 86 (2005), p. 082505.CrossRefADSGoogle Scholar
  11. 11.
    S. Singh et al., J. Appl. Phys., 103 (2008), p. 07D108.CrossRefGoogle Scholar
  12. 12.
    X. Liu et al., Appl. Phys. Lett., 88 (2006), p. 062508.CrossRefADSGoogle Scholar
  13. 13.
    S. Ramachandran et al., Appl. Phys. Lett., 87 (2005), p. 172502.CrossRefADSGoogle Scholar
  14. 14.
    K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett., 79 (2001), p. 988.CrossRefADSGoogle Scholar
  15. 15.
    S. Kolesnik, B. Dabrowski, and J. Mais, J. Appl. Phys., 95 (2004), p. 2582.CrossRefADSGoogle Scholar
  16. 16.
    Z. Jin et al., Appl. Phys. Lett., 78 (2001), p. 3824.CrossRefADSGoogle Scholar
  17. 17.
    H.J. Lee et al., Appl. Phys. Lett., 81 (2002), p. 4020.CrossRefADSGoogle Scholar
  18. 18.
    S. Ramachandran, A. Tiwari, and J. Narayan, Appl. Phys. Lett., 84 (2004), p. 5255.CrossRefADSGoogle Scholar
  19. 19.
    J.H. Kim et al., Appl. Phys., 92 (2002), p. 6066.CrossRefGoogle Scholar
  20. 20.
    A.C. Tuan et al., Phys. Rev. B, 70 (2004), p. 054424.CrossRefADSGoogle Scholar
  21. 21.
    A.J. Behan et al., Phys. Rev. Lett., 100 (2006), p. 047206.CrossRefADSGoogle Scholar
  22. 22.
    X.H. Xu et al., New J. Phys., 8 (2006), p. 135.CrossRefADSGoogle Scholar
  23. 23.
    K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39 (2000), p. L555.CrossRefADSGoogle Scholar
  24. 24.
    M.S. Park and B.I. Min, Phys. Rev. B, 68 (2003), p. 224436.CrossRefADSGoogle Scholar
  25. 25.
    C.-H. Chien et al., J. Magn. Magn. Mater., 282 (2004), p. 275.CrossRefADSGoogle Scholar
  26. 26.
    D.B. Buchholz et al., Appl. Phys. Lett., 87 (2005), p. 082504.CrossRefADSGoogle Scholar
  27. 27.
    K. Sato and H. Katayama-Yoshida, Physica B, 308–310 (2001), pp. 904–907.CrossRefGoogle Scholar
  28. 28.
    A. Tiwari et al., Appl. Phys. Lett., 92 (2008), p. 062509.CrossRefADSGoogle Scholar
  29. 29.
    D. Chakraborti et al., J. Appl. Phys., 102 (2007), p. 113908.CrossRefADSGoogle Scholar
  30. 30.
    W. Yu et al., J. Appl. Phys., 103 (2008), p. 093901.CrossRefADSGoogle Scholar
  31. 31.
    T. Wakano et al., Physica E (Amsterdam), 10 (2001), p. 260.ADSGoogle Scholar
  32. 32.
    Z. Yin et al., Solid State Commun., 135 (2005), p. 430.CrossRefADSGoogle Scholar
  33. 33.
    V. Jayaram and B.S. Rani, Mater. Sci. Eng. A, 304 (2001), p. 800.CrossRefGoogle Scholar
  34. 34.
    S. Zhou et al., J. Appl. Phys., 100 (2006), p. 114304.CrossRefADSGoogle Scholar
  35. 35.
    S. Zhou et al., Phys. Rev. B, 77 (2008), p. 035209.CrossRefADSGoogle Scholar
  36. 36.
    S. Zhou et al., J. Appl. Phys. Lett., 103 (2008), p. 043901.ADSGoogle Scholar
  37. 37.
    M. Snure, A. Tiwari, and D. Kumar, Appl. Phys. Lett., 94 (2009), p. 012510.CrossRefADSGoogle Scholar
  38. 38.
    T. Fukumura et al., Appl. Phys. Lett., 78 (2001), p. 958.CrossRefADSGoogle Scholar
  39. 39.
    W. Jung et al., Appl. Phys. Lett., 80 (2002), p. 4561.CrossRefADSGoogle Scholar
  40. 40.
    P. Sati et al., Phys. Rev. Lett., 98 (2007), p. 137204.PubMedCrossRefADSGoogle Scholar
  41. 41.
    A. Tiwari et al., Solid State Communications, 121 (2002), p. 371.CrossRefADSGoogle Scholar
  42. 42.
    C.N.R. Rao and F.L. Deepak, J. Mater. Chem., 15 (2005), p. 573.CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Michael Snure
    • 1
  • Dhananjay Kumar
    • 2
  • Ashutosh Tiwari
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Utah, SLCUtahUSA
  2. 2.Department of Mechanical EngineeringNorth Carolina A & TGreensboroUSA

Personalised recommendations