JOM

, Volume 61, Issue 6, pp 29–38

Microstructural coarsening in Sn-Ag-based solders and its effects on mechanical properties

Lead-Free Solder Research Summary

Abstract

Solders based on Sn-Ag alloys are susceptible to microstructural coarsening during storage or service, resulting in evolution of joint properties, and hence reliability, over time. Coarsening can occur during static aging, and even faster during thermo-mechanical cycling (TMC). The kinetics of coarsening may also depend on the scale of the joint. These effects lead to evolution of the mechanical properties of the joint over time, as well as spatial variations of property within the joint. Therefore, accurate prediction of joint properties during service or storage requires a quantitative understanding of coarsening under both isothermal and TMC conditions, and incorporating these in constitutive laws. This paper discusses the kinetics of coarsening in Sn-Ag based solders, and presents a rationale for joint-scale dependence of coarsening. The impact of coarsening on creep and fracture properties of joints under drop conditions are also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.K. Kang et al., IBM J Res. Dev., 49 (2005), pp. 607–620.CrossRefGoogle Scholar
  2. 2.
    S. Choi et al., J. Electron. Mater., 28 (1999), pp. 1209–1215.CrossRefADSGoogle Scholar
  3. 3.
    K.N. Subramanian, T.R. Bieler, and J.P. Lucas, J. Electron. Mater., 28 (1999), pp. 1176–1183.CrossRefADSGoogle Scholar
  4. 4.
    P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater., 33 (2004), pp. 1473–1484.CrossRefADSGoogle Scholar
  5. 5.
    Y. Ding et al., J. Alloys and Compounds, 428 (2007), pp. 274–285.CrossRefGoogle Scholar
  6. 6.
    F. Guo et al., Solder. Surf. Mount Tech., 12 (2001), pp. 7–18.CrossRefGoogle Scholar
  7. 7.
    A. Zribi et al., JOM, 54(6) (2002), pp. 38–40.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Q. Xiao, L. Nguyen, and W.D. Armstrong, Proc. of the 2004 Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2004), pp. 1325–1332.Google Scholar
  9. 9.
    R. Fix et al., J. Electron. Mater., 34 (2005), pp. 137–142.CrossRefADSGoogle Scholar
  10. 10.
    I. Dutta, J. Electron. Mater., 32 (2003), pp. 201–207.CrossRefADSGoogle Scholar
  11. 11.
    I. Dutta et al., Mater. Sci. Eng. A, 410–411 (2005), pp. 48–52.Google Scholar
  12. 12.
    R. Fix, W. Nuchter, and Jurgen Wilde, Soldering and Mount Technology, 20 (2008), pp. 13–21.CrossRefGoogle Scholar
  13. 13.
    S. Wiese, E. Meusel and K.-L. Wolter, Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2003), pp. 197–206.Google Scholar
  14. 14.
    S.L. Allen et al., J. Mater. Res., 19 (2004), pp. 1417–1424.CrossRefADSGoogle Scholar
  15. 15.
    H.L.J. Pang et al., Mater. Sci. Eng. A, 307 (2001), pp. 42–50.CrossRefGoogle Scholar
  16. 16.
    T.Y. Lee et al., J. Mater. Sci., 17 (2002), pp. 291–301.Google Scholar
  17. 17.
    Y.C. Chana et al., Mater. Sci. Eng. B, 55 (1998), pp. 5–13.CrossRefGoogle Scholar
  18. 18.
    A. Zribi et al., J. Electron. Mater., 30 (2001), pp. 1157–1164.CrossRefADSGoogle Scholar
  19. 19.
    D. Suh et al., Mater. Sci. Eng. A, 460–461 (2007), pp. 595–603.Google Scholar
  20. 20.
    E. Ho et al., J. Electron. Mater., 31 (2002), pp. 584–590.CrossRefADSGoogle Scholar
  21. 21.
    P. Kumar et al., Proc. 10th Electronics Packaging Technology Conference (EPTC) (Piscataway, NJ: IEEE, 2008), pp. 903–909.CrossRefGoogle Scholar
  22. 22.
    R. Marks et al., Proc. ITherm 2004 (IEEE CDROM) (Piscataway, NJ: IEEE, 2004), p. 95.Google Scholar
  23. 23.
    I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. A, A379 (2004), p. 401.Google Scholar
  24. 24.
    R.S. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A, 39 (2008), pp. 349–362.CrossRefGoogle Scholar
  25. 25.
    X. Deng et al., Metall. Mater. Trans. A, 36 (2005), pp. 55–64.CrossRefGoogle Scholar
  26. 26.
    K. Mysore et al., Proc. 11th Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (Piscataway, NJ: IEEE, 2008), pp. 870–875.CrossRefGoogle Scholar
  27. 27.
    X. Long et al., J. Electron. Mater., 37 (2008), pp. 189–200.CrossRefADSGoogle Scholar
  28. 28.
    P. Kumar et al., in Ref. 26, pp. 660–667.CrossRefGoogle Scholar
  29. 29.
    P. Lall et al., in Ref. 26, pp. 822–835.CrossRefGoogle Scholar
  30. 30.
    D.S. Liu et al., Mater. Sci. Eng. A, 494 (2008), pp. 196–202.CrossRefGoogle Scholar
  31. 31.
    D. Pan et al., Review of Scientific Instruments, 75 (2004), pp. 5244–5252.CrossRefADSGoogle Scholar
  32. 32.
    E.A. Brandes and G.B. Brook, editors, Smithells Metals Reference Book, 7th edition (Oxford, U.K.: Butterworth-Heinemann, 1992), p. 13.Google Scholar
  33. 33.
    L. Smugovsky, D.D. Perovic, and J.W. Rutter, Powder Metallurgy, 48 (2005), pp. 193–198.CrossRefGoogle Scholar
  34. 34.
    H. Nishikawa, J.Y. Piao, and T. Takemoto, J. Japan Inst. Metals, 70 (2006), pp. 427–433.CrossRefGoogle Scholar
  35. 35.
    W. Henderson et al., J. Mater. Res., 17 (2002), pp. 2775–2778.CrossRefADSGoogle Scholar
  36. 36.
    H.Y. Lu, H. Balkan, and K.Y.S. Ng, J. Mater. Sci.—Materials in Electronics, 17 (2006), pp. 171–188.CrossRefGoogle Scholar
  37. 37.
    H.G. Song, J.W. Morris, and F. Hua, Materials Transactions, 43 (2002), p. 184.Google Scholar
  38. 38.
    M.D. Mathew et al., Metall. Mater. Trans. A, 36 (2005), pp. 99–105.CrossRefGoogle Scholar
  39. 39.
    M.A. Rist, W.J. Plumbridge, and S. Cooper, J. Electron. Mater., 35 (2006) p. 1050.CrossRefADSGoogle Scholar
  40. 40.
    S.W. Shin and J. Yu, J. Electron. Mater., 34 (2005), p. 188.CrossRefADSGoogle Scholar
  41. 41.
    Z. Guo, Y.H. Pao, and H. Conrad, Trans. ASME, J. Electron. Packaging, 117 (1995), p. 100.CrossRefGoogle Scholar
  42. 42.
    R.W. Neu, D.T. Scott, and M.W. Woodmansee, ASME Trans., J. Electron. Packaging, 123 (2001), p. 238.CrossRefGoogle Scholar
  43. 43.
    M. Kerr and N. Chawla, Acta Materialia, 52 (2004), p. 4527.CrossRefGoogle Scholar
  44. 44.
    C. Park et al., J. Mater. Sci., 42 (2007), pp. 5182–5187.CrossRefADSGoogle Scholar
  45. 45.
    L.M. Brown and R.K. Ham, Strengthening Methods in Crystals, ed. A. Kelly and R.B. Nicholson (London: Appl. Sci. Publ. Ltd., 1971), pp. 12–135.Google Scholar
  46. 46.
    R. Lagenborg, Scripta Metall., 7 (1973), p. 605.CrossRefGoogle Scholar
  47. 47.
    E. Arzt and J. Rosler, Acta Metall., 36 (1988), p. 1053.CrossRefGoogle Scholar
  48. 48.
    J. Rosler and E. Arzt, Acta Metall. Mater., 38 (1990), p. 671.CrossRefGoogle Scholar
  49. 49.
    M.L. Huang, L. Wang, and C.M.L. Wu, J. Mater. Research, 17 (2002), p. 2897.CrossRefADSGoogle Scholar
  50. 50.
    P. Adeva et al., Mater. Sci. Eng. A, A194 (1995), pp. 17–23.Google Scholar
  51. 51.
    T. Reinikainen and J. Kivilahti, Metall. Mater. Trans., 30A (1999), pp. 123–132.CrossRefGoogle Scholar
  52. 52.
    G.S. Ansell and J. Weertman, Trans. TMS-AIME, 215 (1959), p. 838.Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.School of Mechanical EngineeringPurdue University in IndianaPurdueUSA

Personalised recommendations