, Volume 61, Issue 4, pp 86–90 | Cite as

New composite thermoelectric materials for energy harvesting applications

  • M. S. Dresselhaus
  • G. Chen
  • Z. F. Ren
  • G. Dresselhaus
  • A. Henry
  • J. -P. Fleurial
Global Innovations: Materials for Energy Overview


The concept of using nanostructured composite materials to enhance the dimensionless thermoelectric figure of merit ZT relative to that for their counterpart homogeneous alloyed bulk crystalline materials of similar chemical composition is presented in general terms. Specific applications are made to the Si-Ge and Bi2-−xSbxTe3 systems for use in high-temperature power generation and cooling applications. The scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease in the thermal conductivity are emphasized insofar as their simultaneous occurrence is enabled by the independent control of these physical properties through the special properties of their nanostructures. Also emphasized are the practical advantages of using such bulk samples both for thermoelectric property measurements and for providing a straightforward path to scaling up the materials synthesis and integration of such nanostructured materials into practical thermoelectric powergeneration and cooling modules and devices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lon E. Bell, Science, 321 (2008), p. 1457.PubMedCrossRefADSGoogle Scholar
  2. 2.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics (Berlin: Springer-Verlag, 2001).MATHGoogle Scholar
  3. 3.
    C. Uher, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: Taylor & Francis/CRC Press, Inc., 2006), Chapter 34, pp. 34-1–34-17.Google Scholar
  4. 4.
    T.M. Tritt and M.A. Subramanian, MRS Bulletin, 31 (2006), p. 188–198.Google Scholar
  5. 5.
    J.P. Heremans et al., Science, 321 (2008), pp. 554–557.PubMedCrossRefADSGoogle Scholar
  6. 6.
    Bed Poudel et al., Science, 320 (2008), pp. 634–638.PubMedCrossRefADSGoogle Scholar
  7. 7.
    A.I. Hochbaum et al., Nature, 451 (2008), pp. 163–167.PubMedCrossRefADSGoogle Scholar
  8. 8.
    M.S. Dresselhaus et al., Advanced Materials, 19 (2007), pp. 1043–1053.CrossRefGoogle Scholar
  9. 9.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B, 47 (1993), pp. 16631–16634.CrossRefADSGoogle Scholar
  10. 10.
    Yucheng Lan et al., Nano Letters, article ASAP (25 February 2009), DOI: 101021/nl803235n.Google Scholar
  11. 11.
    G.S. Snyder and E.S. Toberer, Nature Materials, 7 (2008), p. 105.PubMedCrossRefADSGoogle Scholar
  12. 12.
    Ronggui Yang, Gang Chen, and M.S. Dresselhaus, Phys. Rev. B, 72 (2005), pp. 125418-1–125418-7.ADSGoogle Scholar
  13. 13.
    A. Henry and G. Chen, J. Computational and Theoretical Nanosciences, 5 (2008), pp. 141–152.Google Scholar
  14. 14.
    Giri Joshi et al., Nano Letters, 8 (2008), p. 4670.CrossRefGoogle Scholar
  15. 15.
    Xiaowei Wang et al., Applied Physics Letters, 93 (2008), p. 193121.CrossRefADSGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • M. S. Dresselhaus
    • 1
  • G. Chen
    • 1
  • Z. F. Ren
    • 2
  • G. Dresselhaus
    • 1
  • A. Henry
    • 1
  • J. -P. Fleurial
    • 3
  1. 1.Institute of TechnologyCambridgeUSA
  2. 2.Boston CollegeChestnut HillUSA
  3. 3.Jet Propulsion Laboratory/California Institute of TechnologyPasadenaUSA

Personalised recommendations