JOM

, 61:24 | Cite as

Micro- and nanoscale tensile testing of materials

Nanomechanical Characterization Overview

Abstract

This article reviews concepts and techniques for performing instrumented tensile testing of materials at small dimensions. State-of-the-art methods to probe tensile behavior of micro- and nanoscaled materials span many orders of magnitudes of force and displacement, often requiring a custom solution for each new material discovery. We discuss the experimental opportunities, challenges, and pitfalls in concert with the scientific insights revealed from tensile investigations at length scales where conventional wisdom is challenged on how materials deform.

References

  1. 1.
    Y. Gogotsi, editor, Nanomaterials Handbook (Oxford, U.K.: Taylor and Francis, Inc., 2006).Google Scholar
  2. 2.
    K.J. Hemker and W.N. Sharpe, Annual Review of Materials Research, 37(1) (2007), pp. 93–126.CrossRefGoogle Scholar
  3. 3.
    C.A. Neugebauer, Journal of Applied Physics, 31(6) (1960), pp. 1096–1101.ADSCrossRefGoogle Scholar
  4. 4.
    James W. Dally and David T. Read, JMR, 8 (1993), pp. 1542–1549.CrossRefGoogle Scholar
  5. 5.
    W.N. Sharpe, Jr. et al., Micro Electro Mechanical Systems, 1997 (MEMS’ 97) (Piscataway, NJ: IEEE, 1997), pp. 424–429.Google Scholar
  6. 6.
    K.J. Hemker et al., Journal of Microelectromechanical Systems, 10(3) (2001), pp. 317–326.MathSciNetCrossRefGoogle Scholar
  7. 7.
    D.S. Gianola et al., Acta Materialia, 54(8) (2006), pp. 2253–2263.CrossRefGoogle Scholar
  8. 8.
    R.D. Emery and G.L. Povirk, Acta Materialia, 51(7) (2003), pp. 2067–2078.CrossRefGoogle Scholar
  9. 9.
    W.N. Sharpe et al., unpublished work (2008).Google Scholar
  10. 10.
    R.L. Edwards, G. Coles, and W.N. Sharpe, Jr., Experimental Mechanics, 44(1) (2004), pp. 49–54.CrossRefGoogle Scholar
  11. 11.
    C.A. Zorman et al., Journal of Microelectromechanical Systems, 14(4) (2005), pp. 664–672.CrossRefGoogle Scholar
  12. 12.
    T. Tsuchiya et al., Micro Electro Mechanical Systems, 1997 (MEMS’ 97) (Piscataway, NJ: IEEE, 1997), pp. 529–534.Google Scholar
  13. 13.
    W.N. Sharpe, K.T. Turner, and R.L. Edwards, Experimental Mechanics, 39(3) (1999), pp. 162–170.CrossRefGoogle Scholar
  14. 14.
    W.N. Sharpe et al., Proceedings of IMECE 2006, 2006 ASME International Mechanical Engineering Congress and Exposition (New York: ASME, 2006), p. 13290.Google Scholar
  15. 15.
    W.N. Sharpe et al., Experimental Mechanics, 47(5) (2006), pp. 649–658.CrossRefGoogle Scholar
  16. 16.
    Ioannis Chasiotis and Wolfgang Knauss, Experimental Mechanics, 42(1) (2002), pp. 51–57.CrossRefGoogle Scholar
  17. 17.
    S.A.I. Johansson and S. Greek, Micromachined Devices and Components III, Volume 3224 (Bellingham, WA, SPIE, 1997), pp. 344–351.Google Scholar
  18. 18.
    D.T. Read et al., Scripta Materialia, 45(5) (2001), pp. 583–589.CrossRefGoogle Scholar
  19. 19.
    G. Coles et al., Mechanical Properties of Structural Films, ed. C.L. Muhlsteom and S.B. Brown (West Conshohocken, PA: ASTM, 2001), pp. 3–15.Google Scholar
  20. 20.
    B.L. Boyce et al., Journal of Microelectromechanical Systems, 16(2) (2007), pp. 179–190.MathSciNetCrossRefGoogle Scholar
  21. 21.
    M.A. Haque and M.T.A. Saif, Scripta Materialia, 47(12) (2002), pp. 863–867.CrossRefGoogle Scholar
  22. 22.
    Y. Zhu and H.D. Espinosa, Proceedings of the National Academy of Sciences of the United States of America, 102(41) (2005), pp. 14503–14508.PubMedADSCrossRefGoogle Scholar
  23. 23.
    Y. Zhu, C. Ke, and H.D. Espinosa, Experimental Mechanics, 47(1) (2007), pp. 7–24.CrossRefGoogle Scholar
  24. 24.
    J. Cumings and A. Zettl, Science, 289(5479) (2000), pp. 602–604.PubMedADSCrossRefGoogle Scholar
  25. 25.
    P. Poncharal et al., Science, 283(5407) (1999), pp. 1513–1516.PubMedADSCrossRefGoogle Scholar
  26. 26.
    P.A. Williams et al., Applied Physics Letters, 80(14) (2002), pp. 2574–2576.ADSCrossRefGoogle Scholar
  27. 27.
    H.W.P. Koops et al., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 33(12B) (1994), pp. 7099–7107.Google Scholar
  28. 28.
    F.A. Stevie and L.A. Giannuzzi, editors, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (New York: Springer, 2005).Google Scholar
  29. 29.
    C.A. Volkert and A.M. Minor, MRS Bulletin, 32(5) (2007), pp. 389–395.Google Scholar
  30. 30.
    S. Orso et al., Advanced Materials, 18(7) (2006), pp. 874–877.CrossRefGoogle Scholar
  31. 31.
    H. Hiroshima et al., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 38(12B) (1999), pp. 7135–7139.MathSciNetGoogle Scholar
  32. 32.
    D.M. Eigler and E.K. Schweizer, Nature, 344(6266) (1990), pp. 524–526.ADSCrossRefGoogle Scholar
  33. 33.
    D. Nyyssonen, L. Landstein, and E. Coombs, Journal of Vacuum Science & Technology B, 9(6) (1991), pp. 3612–3616.ADSCrossRefGoogle Scholar
  34. 34.
    M. Sitti and H. Hashimoto, Advanced Robotics, 13(4) (1999), pp. 417–436.CrossRefGoogle Scholar
  35. 35.
    M.A. Karymov et al., Single Molecules, 1(2) (2000), pp. 185–192.ADSCrossRefGoogle Scholar
  36. 36.
    Yu Huang et al., Science, 291(5504) (2001), pp. 630–633.PubMedADSCrossRefGoogle Scholar
  37. 37.
    D.L. Fan et al., Applied Physics Letters, 85(18) (2004), pp. 4175–4177.ADSCrossRefGoogle Scholar
  38. 38.
    Jing Kong et al., Nature, 395(6705) (1998), pp. 878–881.CrossRefADSGoogle Scholar
  39. 39.
    R. He et al., Advanced Materials, 17 (2005), pp. 2098–2102.CrossRefGoogle Scholar
  40. 40.
    T.E. Buchheit et al., Journal of Materials Science, 38(20) (2003), pp. 4081–4086.CrossRefGoogle Scholar
  41. 41.
    W.N. Sharpe, B. Yuan, and R.L. Edwards, Journal of Microelectromechanical Systems, 6(3) (1997), pp. 193–198.CrossRefGoogle Scholar
  42. 42.
    E.P.S. Tan and C.T. Lim, Review of Scientific Instruments, 75(8) (2004), pp. 2581–2585.CrossRefADSGoogle Scholar
  43. 43.
    Hiroshi Miyazaki and Kozaburo Hayashi, Biomedical Microdevices, 2(2) (1999), pp. 151–157.CrossRefGoogle Scholar
  44. 44.
    S. Orso, “Structural and Mechanical Investigations of Biological Materials using a Focused Ion Beam Microscope” (Ph.D. thesis, Universität Stuttgart, 2005).Google Scholar
  45. 45.
    H.D. Espinosa, Y. Zhu, and A. Corigliano, J. Micromech. Microeng., 16 (2006), pp. 242–253.CrossRefGoogle Scholar
  46. 46.
    A.A. Geisberger et al., Journal of Microelectrome-chanical Systems, 12(4) (2003), pp. 513–523.CrossRefGoogle Scholar
  47. 47.
    G. Binnig, C.F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56(9) (1986), pp. 930–933.PubMedADSCrossRefGoogle Scholar
  48. 48.
    V. Nickolay et al., Review of Scientific Instruments, 75(7) (2004), pp. 2229–2253.CrossRefGoogle Scholar
  49. 49.
    K. Kinosita et al., Japanese Journal of Applied Physics, 6 (1967), pp. 42–53.ADSCrossRefGoogle Scholar
  50. 50.
    M.F. Yu et al., Science, 287(5453) (2000), pp. 637–640.PubMedADSCrossRefGoogle Scholar
  51. 51.
    S. Gudlavalleti, B. Gearing, and L. Anand, Experimental Mechanics, 45(5) (2005), pp. 412–419.CrossRefGoogle Scholar
  52. 52.
    G. Richter et al., “Ultra High Strength Single Crystalline Nano-Whiskers Grown by Physical Vapour Deposition” (unpublished work, 2009).Google Scholar
  53. 53.
    M.A. Haque and M.T.A. Saif, Proceedings of the National Academy of Sciences of the United States of America, 101(17) (2004), pp. 6335–6340.PubMedADSCrossRefGoogle Scholar
  54. 54.
    J.H. Han and M.T.A. Saif, Review of Scientific Instruments, 77(4) (2006), DOI:10.1063/1.2188368.Google Scholar
  55. 55.
    Shaoning Lu et al., Review of Scientific Instruments, 75(6) (2004), pp. 2154–2162.CrossRefADSGoogle Scholar
  56. 56.
    S. Rajagopalan and R. Vaidyanathan, JOM, 54(9) (2002), pp. 45–48.CrossRefGoogle Scholar
  57. 57.
    B. Bhushan et al., Philosophical Magazine A, 74 (1996), pp. 1117–1128.ADSCrossRefGoogle Scholar
  58. 58.
    S.B. Smith, Y.J. Cui, and C. Bustamante, Science, 271(5250) (1966), pp. 795–799.ADSCrossRefGoogle Scholar
  59. 59.
    D.G. Grier, Nature, 424(6950) (2003), pp. 810–816.PubMedADSCrossRefGoogle Scholar
  60. 60.
    M.D. Wang et al., Biophysical Journal, 72(3) (1997), pp. 1335–1346.PubMedCrossRefADSGoogle Scholar
  61. 61.
    Standard Test Methods for Tension Testing of Metallic Materials (West Conshohocken, PA: ASTM, 2004).Google Scholar
  62. 62.
    W.N. Sharpe, NASA Technical Memorandum (1989), p. 101638.Google Scholar
  63. 63.
    Haibo Huang and F. Spaepen, Acta Materialia, 48(12) (2000), pp. 3261–3269.CrossRefGoogle Scholar
  64. 64.
    K.J. Hemker, B.G. Mendis, and C. Eberl, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 483 (2008), pp. 727–730.Google Scholar
  65. 65.
    D.S. Gianola et al., Advanced Materials, 20 (2008), pp. 303–308.CrossRefGoogle Scholar
  66. 66.
    Nicholas Biery, Marc deGraef, and Tresa Pollock, Metallurgical and Materials Transactions A, 34(10) (2003), pp. 2301–2313.CrossRefGoogle Scholar
  67. 67.
    M. Sutton et al., Experimental Mechanics, 47(6) (2007), pp. 775–787.MathSciNetCrossRefGoogle Scholar
  68. 68.
    M. Sutton et al., Experimental Mechanics, 47(6) (2007), pp. 789–804.MathSciNetCrossRefGoogle Scholar
  69. 69.
    C. Eberl, D.S. Gianola, and R. Thompson, MatLab Central (Natick, MA: The Mathworks, Inc., 2006), File ID:12413.Google Scholar
  70. 70.
    J.J. Vlassak and W.D. Nix, JMR, 7 (1992), pp. 3242–3249.CrossRefGoogle Scholar
  71. 71.
    H.D. Espinosa, B.C. Prorok, and B. Peng, Journal of the Mechanics and Physics of Solids, 52(3) (2004), pp. 667–689.ADSCrossRefGoogle Scholar
  72. 72.
    N. André et al., Microelectronic Engineering, 84(11) (2007), pp. 2714–2718.CrossRefGoogle Scholar
  73. 73.
    M. Hommel and O. Kraft, Acta Materialia, 49(19) (2001), pp. 3935–3947.CrossRefGoogle Scholar
  74. 74.
    F. Macionczyk and W. Bruckner, Journal of Applied Physics, 86(9) (1999), pp. 4922–4929.CrossRefADSGoogle Scholar
  75. 75.
    Z. Suo et al., Applied Physics Letters, 87(16) (2005), pp. 1–3.Google Scholar
  76. 76.
    N.S. Lu et al., Applied Physics Letters, 91(22) (2007), p. 221909.ADSCrossRefGoogle Scholar
  77. 77.
    M.R. Begley and H. Bart-Smith, International Journal of Solids and Structures, 42(18–19) (2005), pp. 5259–5273.MATHCrossRefGoogle Scholar
  78. 78.
    J. Bohm et al., Review of Scientific Instruments, 75(4) (2004), pp. 1110–1119.CrossRefADSGoogle Scholar
  79. 79.
    U. Welzel et al., Journal of Applied Crystallography, 38(1) (2005), pp. 1–29.CrossRefGoogle Scholar
  80. 80.
    P.A. Gruber et al., JMR, 23 (2008), pp. 2406–2419.CrossRefGoogle Scholar
  81. 81.
    Patric A. Gruber et al., Acta Materialia, 56(8) (2008), pp. 1876–1889.CrossRefMathSciNetGoogle Scholar
  82. 82.
    Sven Olliges et al., Acta Materialia, 55(15) (2007), pp. 5201–5210.CrossRefGoogle Scholar
  83. 83.
    Y. Xiang and J.J. Vlassak, Acta Materialia, 54(20) (2006), pp. 5449–5460.CrossRefGoogle Scholar
  84. 84.
    L. Nicola et al., J. Mechanics and Physics of Solids, 54(10) (2006), pp. 2089–2110.MATHADSCrossRefGoogle Scholar
  85. 85.
    B.C. Prorok, H.D. Espinosa, and M.A. Fischer, J. Mechanics and Physics of Solids, 51 (2003), pp. 41–67.Google Scholar
  86. 86.
    Autumn Kellar et al., Nature, 405(6787) (2000), pp. 681–685.ADSCrossRefGoogle Scholar
  87. 87.
    Autumn Kellar et al., Proceedings of the National Academy of Sciences of the United States of America, 99(19) (2002), pp. 12252–12256.CrossRefGoogle Scholar
  88. 88.
    Gerrit Huber et al., Proceedings of the National Academy of Sciences of the United States of America, 102(45) (2005), pp. 16293–16296.PubMedADSCrossRefGoogle Scholar
  89. 89.
    Gerrit Huber et al., Acta Biomaterialia, 3(4) (2007), pp. 607–610.PubMedCrossRefGoogle Scholar
  90. 90.
    Ralph Spolenak, Stanislav Gorb, and Eduard Arzt, Acta Biomaterialia, 1(1) (2005), pp. 5–13.PubMedCrossRefGoogle Scholar
  91. 91.
    Christian Greiner, Ralph Spolenak, and Eduard Arzt, Acta Biomaterialia, 5(2) (2009), pp. 597–606.PubMedCrossRefGoogle Scholar
  92. 92.
    S.S. Brenner, J. Applied Physics, 27(12) (1956), pp. 1484–1491.ADSCrossRefGoogle Scholar
  93. 93.
    S.S. Brenner, J. Applied Physics, 28(9) (1957), pp. 1023–1026.ADSCrossRefGoogle Scholar
  94. 94.
    S.S. Brenner, J. Applied Physics, 30(12) (1958), pp. 266–267.ADSGoogle Scholar
  95. 95.
    P.M. Duxburry, Statistical Models for the Fracture of Disordered Media (St. Louis, MO: North-Holland Publishers, 1990), p. 189.Google Scholar
  96. 96.
    Michael D. Uchic et al., Science, 305(5686) (2004), pp. 986–989.PubMedCrossRefADSGoogle Scholar
  97. 97.
    Michael D. Uchic and Dennis M. Dimiduk, Materials Science and Engineering A, 400–401(1–2 SUPPL) (2005), pp. 268–278.CrossRefGoogle Scholar
  98. 98.
    Z.W. Shan et al., Nat. Mater., 7(2) (2008), pp. 115–119.PubMedADSMathSciNetCrossRefGoogle Scholar
  99. 99.
    C.A. Volkert and E.T. Lilleodden, Philosophical Magazine, 86(33) (2006), pp. 5567–5579.ADSCrossRefGoogle Scholar
  100. 100.
    C.P. Frick et al., Materials Science and Engineering: A, 489(1–2) (2008), pp. 319–329.CrossRefMathSciNetGoogle Scholar
  101. 101.
    J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Materialia, 53(6) (2005), pp. 1821–1830; “Erratum,” Acta Materialia, 54 (6) (2006), p. 1705.CrossRefGoogle Scholar
  102. 102.
    Julia R. Greer, Warren C. Oliver, and William D. Nix, Acta Materialia, 53(6) (2005), pp. 1821–1830.CrossRefGoogle Scholar
  103. 103.
    M. Zaiser et al., Philosophical Magazine, 8(30) (2008), pp. 3861–3874.CrossRefADSGoogle Scholar
  104. 104.
    Steffen Brinckmann, Ju-Young Kim, and Julia R. Greer, Physical Review Letters, 100(15) (2008), p. 155502.PubMedADSCrossRefGoogle Scholar
  105. 105.
    B.E. Schuster et al., Acta Materialia, 56(18) (2008), pp. 5091–5100.CrossRefGoogle Scholar
  106. 106.
    Z.W. Shan et al., Physical Review B (Condensed Matter and Materials Physics), 77(15) (2008), p. 155419.ADSMathSciNetGoogle Scholar
  107. 107.
    C.A. Volkert, A. Donohue, and F. Spaepen, J. Applied Physics, 103(8) (2008), p. 083539.Google Scholar
  108. 108.
    D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy, Acta Materialia, 53(15) (2005), pp. 4065–4077.CrossRefGoogle Scholar
  109. 109.
    J.R. Greer and W.D. Nix, Physical Review B (Condensed Matter and Materials Physics), 73(24) (2006), p. 245410.ADSGoogle Scholar
  110. 110.
    D. Kiener, W. Grosinger, and G. Dehm, Scripta Materialia, 60(3) (2009), pp. 148–151.CrossRefGoogle Scholar
  111. 111.
    D. Kiener et al., Acta Materialia, 56(3) (2008), pp. 580–592.CrossRefGoogle Scholar
  112. 112.
    H. Bei et al., Scripta Materialia, 57(5) (2007), pp. 397–400.CrossRefGoogle Scholar
  113. 113.
    H. Bei et al., Applied Physics Letters, 91(11) (2007), p. 111915.ADSCrossRefGoogle Scholar
  114. 114.
    H. Bei et al., Acta Materialia, 56(17) (2008), pp. 4762–4770.CrossRefGoogle Scholar
  115. 115.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Materialia, 51(19) (2003), pp. 5743–5774.CrossRefGoogle Scholar
  116. 116.
    M.W. Chen, E. Ma, and K.J. Hemker, Nanomaterials Handbook, ed. Yury Gogotsi (Boca Raton, FL: CRC Press, 2006), pp. 497–531.Google Scholar
  117. 117.
    D. Wolf et al., Acta Materialia, 53(1) (2005), pp. 1–40.CrossRefGoogle Scholar
  118. 118.
    M. Legros et al., Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 80(4) (2000), pp. 1017–1026.ADSGoogle Scholar
  119. 119.
    Zeljka Budrovic et al., Science, 304(5668) (2004), pp. 273–276.PubMedCrossRefADSGoogle Scholar
  120. 120.
    D. Pan et al., Scripta Materialia, 48(12) (2003), pp. 1581–1586.CrossRefGoogle Scholar
  121. 121.
    D.S. Gianola et al., Scripta Materialia, 55(7) (2006), pp. 649–652.CrossRefGoogle Scholar
  122. 122.
    D.S. Gianola et al., Materials Science and Engineering: A, 483–484 (2008), pp. 637–640.CrossRefGoogle Scholar
  123. 123.
    G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals Thermodynamics, Kinetics, Applications (Boca Raton, FL: CRC Press, 1999).Google Scholar
  124. 124.
    J.W. Cahn and J.E. Taylor, Acta Materialia, 52(16) (2004), pp. 4887–4898.CrossRefGoogle Scholar
  125. 125.
    J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Materialia, 54(19) (2006), pp. 4953–4975.CrossRefGoogle Scholar
  126. 126.
    M. Ashby and D.R.H. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, 3rd edition (St. Louis, MO: Butterworth-Heinemann, 2005).Google Scholar
  127. 127.
    D.T. Read, International Journal of Fatigue, 20(3) (1998), pp. 203–209.CrossRefGoogle Scholar
  128. 128.
    G.P. Zhang et al., Microelectronics Reliability, 47(12) (2007), pp. 2007–2013.CrossRefGoogle Scholar
  129. 129.
    Jun-Hyub Park, ManSik Myung, and Yun-Jae Kim, Sensors and Actuators A: Physical, 147(2) (2008), pp. 561–569.MathSciNetCrossRefGoogle Scholar
  130. 130.
    M.A. Eby, W.M. Sharpe, Jr., and G. Coles, Proceedings Transducers’ 01 (Berlin: Springer-Verlag, 2001), pp. 1366–1369.Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations