Advertisement

JOM

, Volume 61, Issue 2, pp 56–60 | Cite as

Dislocation nucleation and multiplication in small volumes: The onset of plasticity during indentation testing

  • D. F. BahrEmail author
  • S. L. Jennerjohn
  • D. J. Morris
75 Years of Dislocations/Overview

Abstract

While classical studies of dislocation behavior have focused on the motion and multiplication of dislocations, recent advances in experimental methods allow studies that probe relatively dislocation-free volumes of materials. When the dislocation concept was initially developed 75 years ago, researchers were not easily able to examine the ultra-fine size scales of materials that would allow the onset of plasticity to be examined. This paper will review some recent developments in the area of incipient plasticity in materials and provide a historical context for current interest in testing mechanical behavior at small scales.

Keywords

Dislocation Nucleation Depth Curve Spherical Probe Yield Point Phenomenon Theoretical Shear Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.I. Taylor, Proc. Roy. Soc. A, 145 (1934), pp. 362–387.CrossRefADSGoogle Scholar
  2. 2.
    E. Orowan, Zeit. Phys., 89 (1934), pp. 605–613, 614–633, 634–659.CrossRefADSGoogle Scholar
  3. 3.
    M. Polanyi, Zeit. Phys., 89 (1934), pp. 660–664.CrossRefADSGoogle Scholar
  4. 4.
    J.M. Burgers, Proc. Kon. Ned. Akad. Wetenschap., 42 (1939), pp. 293, 378.Google Scholar
  5. 5.
    P.B. Hirsch, R.W. Horne, and M.J. Whelan, Phil. Mag., 1 (1956), p. 677.CrossRefADSGoogle Scholar
  6. 6.
    A.H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford, U.K.: Oxford Press, 1953), pp. 11–12, 53–54.zbMATHGoogle Scholar
  7. 7.
    C. Herring and J.K. Galt, Phys. Rev., 85 (1952), pp. 1060–1061.CrossRefADSGoogle Scholar
  8. 8.
    S.S. Brenner, Science, 128 (1958), pp. 569–575.PubMedCrossRefADSGoogle Scholar
  9. 9.
    L.E. Samuels and T.O. Mulhearn, J. Mech. Phys. Solids, 5 (1957), pp. 125–134.CrossRefADSGoogle Scholar
  10. 10.
    T.O. Mulhearn, J. Mech. Phys. Solids, 7 (1959), pp. 85–96.CrossRefADSGoogle Scholar
  11. 11.
    K.L. Johnson, Contact Mechanics (Cambridge, U.K.: Cambridge University Press, 1999).Google Scholar
  12. 12.
    N. Gane and F.P. Bowden, J. Appl. Phys., 39 (1967), pp. 1432–1435.CrossRefADSGoogle Scholar
  13. 13.
    J.B. Pethica and D. Tabor, Surf. Sci., 89 (1979), pp. 182–190.CrossRefADSGoogle Scholar
  14. 14.
    A.B. Mann and J.B. Pethica, Appl. Phys. Lett., 69 (1996), pp. 907–909.CrossRefADSGoogle Scholar
  15. 15.
    W.W. Gerberich et al., Acta Mater., 44 (1996), pp. 3585–3598.CrossRefGoogle Scholar
  16. 16.
    S.A. Syed-Asif and J.B. Pethica, Phil. Mag. A, 76 (1997), pp. 1105–1118.CrossRefADSGoogle Scholar
  17. 17.
    D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Acta Mater., 46 (1998), pp. 3605–3617.CrossRefGoogle Scholar
  18. 18.
    Y. Chiu and A. Ngan, Acta Mater., 50 (2002), pp. 1599–1611.CrossRefGoogle Scholar
  19. 19.
    J. Bradby, J. William, and M. Swain, J. Mater. Res., 19 (2003), pp. 380–386.CrossRefADSGoogle Scholar
  20. 20.
    C.A. Schuh, J.K. Mason, and A.C. Lund, Nature Mater., 4 (2005), pp. 617–622.CrossRefADSGoogle Scholar
  21. 21.
    C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Phys. Rev. B, 58 (1998), pp. 11085–11088.CrossRefGoogle Scholar
  22. 22.
    A.A. Zbib and D.F. Bahr, Metal. Mater. Trans. A, 38 (2007), pp. 2249–2255.CrossRefGoogle Scholar
  23. 23.
    D. Rodriquez-Marek, M. Pang, and D.F. Bahr, Metal. Mater. Trans. A, 34A (2003), pp. 1291–1296.CrossRefGoogle Scholar
  24. 24.
    M. Pang and D.F. Bahr, J. Mater. Res., 16 (2001), pp. 2634–2643.CrossRefADSGoogle Scholar
  25. 25.
    E. Weppelmann and M.V. Swain, Thin Solid Films, 286 (1996), pp. 111–121.CrossRefGoogle Scholar
  26. 26.
    S.V. Hainsworth, M.R. McGurk, and T.F. Page, Surf. Coat. Tech., 102 (1998), pp. 97–107.CrossRefGoogle Scholar
  27. 27.
    D.E. Kramer, K.B. Yoder, and W.W. Gerberich, Phil. Mag. A, 81 (2001), pp. 2033–2058.CrossRefADSGoogle Scholar
  28. 28.
    P.M. Sargent, J. Mater. Sci. Lett., 8 (1989), pp. 1139–1140.CrossRefGoogle Scholar
  29. 29.
    C.A. Volkert and E.T. Lilleodden, Phil. Mag., 86 (2006), pp. 5567–5579.CrossRefADSGoogle Scholar
  30. 30.
    D. Kiener et al., Acta. Mater., 56 (2008), pp. 580–592.CrossRefGoogle Scholar
  31. 31.
    M.D. Uchic et al., Science, 305 (2004), pp. 986–989.PubMedCrossRefGoogle Scholar
  32. 32.
    A.M. Minor et al., J. Mater. Res., 19 (2004), pp. 176–182.CrossRefADSGoogle Scholar
  33. 33.
    A.M. Minor et al., Nature Mater., 5 (2006), pp. 697–702.CrossRefADSGoogle Scholar
  34. 34.
    Y. Sun et al., JOM, 59(9) (2007), pp. 54–58.CrossRefGoogle Scholar
  35. 35.
    S.V. Hainsworth, T. Bartlett, and T.F. Page, Thin Solid Films, 236 (1993), pp. 214–218.CrossRefADSGoogle Scholar
  36. 36.
    Y. Gaillard, C. Tromas, and J. Woirgard, Phil. Mag. Letters, 83 (2003), pp. 553–561.CrossRefGoogle Scholar
  37. 37.
    K.J. Ramos and D.F. Bahr, J. Mater. Res., 22 (2007), pp. 2037–2045.CrossRefADSGoogle Scholar
  38. 38.
    S.V. Hainsworth, H.W. Chandler, and T.F. Page, J. Mater. Res., 11 (1996), pp. 1987–1995.CrossRefADSGoogle Scholar
  39. 39.
    S.G. Corcoran et al., Phys. Rev. B, 55 (1997), pp. R16057–R16060.CrossRefADSGoogle Scholar
  40. 40.
    K. Durst et al., Acta Mater., 54 (2006), pp. 2547–2555.CrossRefGoogle Scholar
  41. 41.
    J.G. Swadener et al., J. Mater. Res., 16 (2001), pp. 2091–2102.CrossRefADSGoogle Scholar
  42. 42.
    L.E. Seitzman, J. Mater. Res., 13 (1998), pp. 2936–2944.CrossRefGoogle Scholar
  43. 43.
    J. Thurn and R.F. Cook, J. Mater. Res., 17 (2002), pp. 1143–1146.CrossRefADSGoogle Scholar
  44. 44.
    L. Ma and L.E. Levine, J. Mater. Res., 22 (2007), pp. 1656–1661.CrossRefADSGoogle Scholar
  45. 45.
    L. Ma et al., J. Mater. Res. (in press, March 2009).Google Scholar
  46. 46.
    J.K. Mason, A.C. Lund, and C.A. Schuh, Phys. Rev. B, 73 (2006), p. 054102.Google Scholar
  47. 47.
    D.F. Bahr, D.E. Wilson, and D.A. Crowson, J. Mater. Res., 14 (1999), pp. 2269–2275.CrossRefGoogle Scholar
  48. 48.
    D.F. Bahr and G. Vasquez, J. Mater. Res., 20 (2005), pp. 1947–1951.CrossRefADSGoogle Scholar
  49. 49.
    M.M. Biener et al., Phys. Rev. B, 76 (2007), p. 165422.CrossRefADSGoogle Scholar
  50. 50.
    S. Bhagavat and I. Kao, Mater. Sci. Eng. A, 393 (2005), pp. 327–331.CrossRefGoogle Scholar
  51. 51.
    K.A. Nibur, D.F. Bahr, and B.P. Somerday, Acta Mater., 54 (2006), pp. 2677–2684.CrossRefGoogle Scholar
  52. 52.
    A. Barnoush and H. Vehoff, Scripta Mater., 58 (2008), pp. 747–750.CrossRefGoogle Scholar
  53. 53.
    J.A. Zimmerman et al., Phys. Rev. Lett., 87 (2001), p. 165507.Google Scholar
  54. 54.
    A. Hasnaoui, P.M. Derlet, and H. Van Swygenhoven, Acta Mater., 52 (2004), pp. 2251–2258.CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • D. F. Bahr
    • 1
    • 3
    Email author
  • S. L. Jennerjohn
    • 1
  • D. J. Morris
    • 2
  1. 1.Department of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Materials Science and Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Department of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations