Advertisement

JOM

, Volume 60, Issue 11, pp 50–55 | Cite as

The design and production of Ti-6Al-4V ELI customized dental implants

  • Gilbert Chahine
  • Mari Koike
  • Toru Okabe
  • Pauline Smith
  • Radovan Kovacevic
Titanium: Advances in Processing Research Summary

Abstract

This paper addresses the production of customized Ti-6Al-4V ELI dental implants via electron beam melting (EBM). The melting of Ti-6Al-4V ELI powder produces implants with great biocompatibility, fi ne mechanical performance, and a high bone ingrowth potential. The EBM technology is used to produce one-component dental implants that mimic the exact shape of the patient’s tooth, replacing the traditional, three-component, “screw-like” standardized dental implants currently used. The new generation of implants provides the possibility of simplifying pre-insertion procedures leading to faster healing time, and the potential of better and stronger osseointegration, specifi cally through incorporating lattice structure design.

Keywords

Dental Implant Selective Laser Sinter Electron Beam Melting Lattice Struc Electron Beam Melting Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Spiekermann and H.F. Wolf, Implantology (New York: Thieme, 1995), p. 27.Google Scholar
  2. 2.
    M. Jungling, The Changing World of Dental Implantology (Merrill Lynch, October 12, 2006).Google Scholar
  3. 3.
    U.S. Markets for Dental Implants (Toronto, Canada: Millennium Research Group, Toronto USDI, 2003).Google Scholar
  4. 4.
    K.J. Anusavice, Philip’s Science of Dental Materials, 11th Edition (St. Louis, MO: Saunders, 2003).Google Scholar
  5. 5.
    J.A. Griggs and Y. Zhang, “Cyclic Fatigue of Dental Ceramics Using Boundary Technique,” Ceram. Eng. Sci. Proc. 26, Abstract #AM-S11-20-2005 (New York: Wiley & Sons, 2006).Google Scholar
  6. 6.
    C. Deckard, “Methods and Apparatus for Producing Parts by Selective Laser Sintering,” U.S. patent 4,863,538 (filed 17 October 1986, published 5 September 1989).Google Scholar
  7. 7.
    J.J. Beaman et al., Rapid Prototyping A New Direction in Manufacturing with Research and Applications in Thermal Laser Processing (Berlin, Germany: Kluwer Academic Publishers, 1997).Google Scholar
  8. 8.
    ARCAM AB, Krokslätts Fabriker 27A, SE-431 37, Mölndal, Sweden, www.arcam.com.Google Scholar
  9. 9.
    J. Milberg and M. Sigl, Electron Beam Sintering of Metal Powder (German Academic Society for Production Engineering [WGP], 2008).Google Scholar
  10. 10.
    P. Cremascoli, U. Lindhe, and P. Ohldin, “New Orthopedic Implants Produced with Rapid Manufacturing Improve People’s Quality of Life,” Case Study (ARCAM AB, Mölndal, Sweden).Google Scholar
  11. 11.
    M.J. Donachie, Titanium: A Technical Guide (Materials Park, OH: ASM International, 2000), p. 44.Google Scholar
  12. 12.
    J. Wolff, Das Gesetz der Transformation der Knochen (Translation: The Law of Bone Remodeling) (Heidelberg, Germany: Springer Verlag, 1982).Google Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • Gilbert Chahine
    • 1
  • Mari Koike
    • 2
  • Toru Okabe
    • 2
  • Pauline Smith
    • 3
  • Radovan Kovacevic
    • 1
  1. 1.Research Center for Advanced Manufacturing, Department of Mechanical EngineeringSouthern Methodist UniversityDallasUSA
  2. 2.Department of Biomaterials ScienceTexas A&M Health Science Center Baylor College of DentistryDallasUSA
  3. 3.Army Research LaboratoryAberdeeUSA

Personalised recommendations