JOM

, Volume 60, Issue 7, pp 61–65 | Cite as

The first-principles design of ductile refractory alloys

  • Michael C. Gao
  • Ömer N. Doğan
  • Paul King
  • Anthony D. Rollett
  • Michael Widom
Refractory Metals Research Summary

Abstract

The purpose of this work is to predict elastic and thermodynamic properties of chromium-based alloys based on first-principles calculations and to demonstrate an appropriate computational approach to develop new materials for high-temperature applications in energy systems. In this study, Poisson ratio is used as a screening parameter to identify ductilizing additives to the refractory alloys. The results predict that elements such as Ti, V, Zr, Nb, Hf, and Ta show potential as ductilizers in Cr while Al, Ge, and Ga are predicted to decrease the ductility of Cr. Experimental evidence, where available, validates these predictions. The purpose of this work is to predict elastic and thermodynamic properties of chromium-based alloys based on first-principles calculations and to demonstrate an appropriate computational approach to develop new materials for high-temperature applications in energy systems. In this study, Poisson ratio is used as a screening parameter to identify ductilizing additives to the refractory alloys. The results predict that elements such as Ti, V, Zr, Nb, Hf, and Ta show potential as ductilizers in Cr while Al, Ge, and Ga are predicted to decrease the ductility of Cr. Experimental evidence, where available, validates these predictions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.P. Bewlay et al., Metall. Mater. Trans. A, 34A (2003), pp. 2043–2052.CrossRefGoogle Scholar
  2. 2.
    P. Jehanno et al., Metall. Mater. Trans. A, 36A (2005), pp. 515–523.CrossRefGoogle Scholar
  3. 3.
    Ö.N. Doğan, Oxidation of Metals, 69 (2008), pp. 233–247.CrossRefGoogle Scholar
  4. 4.
    W.D. Klopp, J. Metals, 21 (1969), pp. 23–32.Google Scholar
  5. 5.
    Y.F. Gu, H. Harada, and Y. Ro, JOM, 56(9) (2004), pp. 28–33.CrossRefGoogle Scholar
  6. 6.
    M.J. Mehl et al., Phys. Rev. B, 41 (1990), pp. 10311–10323.CrossRefGoogle Scholar
  7. 7.
    U.V. Waghmare et al., Model. Simul. Mater. Sci. Eng., 6 (1998), pp. 493–506.CrossRefGoogle Scholar
  8. 8.
    W.T. Geng, Phys. Rev. B, 68 (2003), art. No. 233402.Google Scholar
  9. 9.
    N.I. Medvedeva, Y.N. Gornostyrev, and A.J. Freeman, Phys. Rev. B, 67 (2003), art. No. 134204.Google Scholar
  10. 10.
    L. Vitos, P.A. Korzhavyi, and B. Johansson, Nature Mater., 2 (2003), pp. 25–28.CrossRefGoogle Scholar
  11. 11.
    M.C. Gao et al., Metall. Mater. Trans. A, 36A (2005), pp. 3269–3279.CrossRefGoogle Scholar
  12. 12.
    C.B. Geller et al., Scripta Mater., 52 (2005), pp. 205–210.CrossRefGoogle Scholar
  13. 13.
    S. Curtarolo, D. Morgan, and G. Ceder, CALPHAD, 29 (2005), pp. 163–211.CrossRefGoogle Scholar
  14. 14.
    M.C. Gao, A.D. Rollett, and M. Widom, CALPHAD, 30 (2006), pp. 341–348.CrossRefGoogle Scholar
  15. 15.
    M.C. Gao, A.D. Rollett, and M. Widom, Phys. Rev. B, 75 (2007), art. No. 174120Google Scholar
  16. 16.
    M.C. Gao et al., Metall. Mater. Trans. A, 38A (2007), pp. 2540–2551.CrossRefGoogle Scholar
  17. 17.
    S.F. Pugh, Phil. Mag., 45 (1954), pp. 823–843.Google Scholar
  18. 18.
    A.H. Cottrell, Advances in Physical Metallurgy, ed. J.A. Charles and G.C. Smith (London: Institute of Metals, 1990), pp. 181–187.Google Scholar
  19. 19.
    J. Schroers and W.L. Johnson, Phys. Rev. Lett., 93 (2004), art. No. 255506.Google Scholar
  20. 20.
    J.J. Lewandowski, W.H. Wang, and A.L. Greer, Phil. Mag. Lett., 85 (2005), pp. 77–87.CrossRefGoogle Scholar
  21. 21.
    T.B. Massalski et al., Binary Alloy Phase Diagrams (Materials Park, OH: ASM International, 1995).Google Scholar
  22. 22.
    G. Kresse and J. Hafner, Phys. Rev. B, 47 (1993), pp. 558–561.CrossRefGoogle Scholar
  23. 23.
    G. Kresse and J. Furthmueller, Phys. Rev. B, 54 (1996), pp. 11169–11186.CrossRefGoogle Scholar
  24. 24.
    P.E. Blöchl, Phys. Rev. B, 50 (1994), pp. 17953–17979.CrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77 (1996), pp. 3865–3868.CrossRefGoogle Scholar
  26. 26.
    A.V. Hershey, J. Appl. Mech., 21 (1954), pp. 236–240.Google Scholar
  27. 27.
    H. Kurishita, T. Kuwabara, and M. Hasegawa, Mat. Sci. Eng. A, 433 (2006), pp.32–38.CrossRefGoogle Scholar
  28. 28.
    C.S. Wukusick, Refractory Metals and Alloys IV—Research and Development (New York: Gordon and Breach Science Publishers, 1967), pp. 231–245.Google Scholar
  29. 29.
    M.P. Brady et al., Scripta Mater., 52 (2005), pp. 815–819.CrossRefGoogle Scholar
  30. 30.
    U. Holzwarth and H. Stamm, J. Nucl. Mater., 300 (2002), pp. 161–177.CrossRefGoogle Scholar
  31. 31.
    M.P. Brady, private communications (2008).Google Scholar
  32. 32.
    J.R. Rice and R. Thomson, Phil. Mag., 19 (1974), pp. 73–97.CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • Michael C. Gao
    • 1
    • 4
  • Ömer N. Doğan
    • 1
  • Paul King
    • 1
  • Anthony D. Rollett
    • 2
  • Michael Widom
    • 3
  1. 1.National Energy Technology LaboratoryAlbanyUSA
  2. 2.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of PhysicsCarnegie Mellon UniversityPittsburghUSA
  4. 4.South ParkUSA

Personalised recommendations