Advertisement

JOM

, Volume 60, Issue 6, pp 54–58 | Cite as

Porous ceramic scaffolds with complex architectures

  • E. Munch
  • J. Franco
  • S. Deville
  • P. Hunger
  • E. Saiz
  • A. P. Tomsia
Research Summary Biological Materials Science

Abstract

This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

Keywords

Compressive Strength Pluronic Bone Tissue Engineering Porous Scaffold Ceramic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Langer and J.P. Vacanti, Science, 260 (1993), pp. 920–926.CrossRefGoogle Scholar
  2. 2.
    A. Almirall et al., Biomat., 25 (2004), pp. 3671–3680.CrossRefGoogle Scholar
  3. 3.
    R.P. del Real et al., Biomat., 23 (2002), pp. 3673–3680.CrossRefGoogle Scholar
  4. 4.
    H.R. Ramay and M. Zhang, Biomat., 24 (2003), pp. 3293–3302.CrossRefGoogle Scholar
  5. 5.
    M. Sous et al., Biomat., 19 (1998), pp. 2147–2153.CrossRefGoogle Scholar
  6. 6.
    M. Kawata et al., J. Mater. Sci. Mater. Med., 15 (2004), pp. 817–823.CrossRefGoogle Scholar
  7. 7.
    J.C. Le Huec et al., Biomat., 16 (1995), pp. 113–120.CrossRefGoogle Scholar
  8. 8.
    D.-M. Liu, Ceramics International, 23 (1997), pp. 135–139.CrossRefGoogle Scholar
  9. 9.
    M. Milosevski et al., Ceramics International, 25 (1999), pp. 693–696.CrossRefGoogle Scholar
  10. 10.
    A. Bignon (Ph.D. Thesis, National Institute of Applied Science, Lyon, France, 2002).Google Scholar
  11. 11.
    S. Michna, W. Wu, and J.A. Lewis, Biomat., 26 (2005), pp. 5632–5639.CrossRefGoogle Scholar
  12. 12.
    J. Russias et al., Journal of Biomedical Materials Research Part A, 83A (2007), pp. 434–445.CrossRefGoogle Scholar
  13. 13.
    J.E. Smay, J. Cesarano, and J.A. Lewis, Langmuir, 18 (2002), pp. 5429–5437.CrossRefGoogle Scholar
  14. 14.
    P. Miranda et al., Acta Biomaterialia, 2 (2006), pp. 457–466.CrossRefGoogle Scholar
  15. 15.
    S. Deville et al., Science, 311 (2006), pp. 515–518.CrossRefGoogle Scholar
  16. 16.
    S. Deville, E. Saiz, and A.P. Tomsia, Acta Materialia, 55 (2007), pp. 1965–1974.CrossRefGoogle Scholar
  17. 17.
    S. Deville, E. Saiz, and A.P. Tomsia, Biomat., 27 (2006), pp. 5480–5489.CrossRefGoogle Scholar
  18. 18.
    H.I. Zhang et al., Nature Materials, (2005), pp. 787–793.Google Scholar
  19. 19.
    M.C. Gutierrez et al., Advanced Materials, 18 (2006), pp. 1137–1140.CrossRefGoogle Scholar
  20. 20.
    R. Murugan and S. Ramakrishna, Composites Science and Technology, 65 (2005), pp. 2385–2390.CrossRefGoogle Scholar
  21. 21.
    V. Karageorgiou and D. Kaplan, Biomat., 26 (2005), pp. 5474–5491.CrossRefGoogle Scholar
  22. 22.
    J.D. Hunt, Materials Science & Technology, 15 (1999), pp. 9–14.CrossRefGoogle Scholar
  23. 23.
    J.J. Klawitter and S.F. Hulbert, Journal of Biomedical Materials Research, 2 (1971), pp. 161–229.CrossRefGoogle Scholar
  24. 24.
    S.J. Simske, R.A. Ayers, and T.A. Bateman, Porous Materials for Tissue Engineering (Enfield, NH: Transtech, 1997), pp. 151–182.Google Scholar
  25. 25.
    A.I. Itala et al., Journal of Biomedical Materials Research, 58 (2001), pp. 679–683.CrossRefGoogle Scholar
  26. 26.
    Tithi Dutta Roy et al., Journal of biomedical Materials Research, 66A (2003), pp. 283–291.CrossRefGoogle Scholar
  27. 27.
    R.M. Pilliar et al., Biomat., 22 (2001), pp. 963–972.CrossRefGoogle Scholar
  28. 28.
    N. Tamai et al., Journal of Biomedical Materials Research, 59 (2002), pp. 110–117.CrossRefGoogle Scholar
  29. 29.
    S. Zmora, R. Glicklis, and S. Cohen, Biomat., 23 (2002), pp. 487–4094.CrossRefGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • E. Munch
    • 1
  • J. Franco
    • 1
  • S. Deville
    • 1
  • P. Hunger
    • 1
  • E. Saiz
    • 1
  • A. P. Tomsia
    • 1
  1. 1.Materials Sciences Division, Lawrence BerkeleyNational LaboratoryBerkeleyUSA

Personalised recommendations