, Volume 60, Issue 1, pp 15–23 | Cite as

Cladding and duct materials for advanced nuclear recycle reactors

  • T. R. AllenEmail author
  • J. T. Busby
  • R. L. Klueh
  • S. A. Maloy
  • M. B. Toloczko
GNEP Overview


The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.


Fast Reactor Oxide Dispersion Strengthened DBTT Irradiation Creep Oxide Dispersion Strengthened Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Global Nuclear Energy Partnership Technology Development Plan, Report number: GNEP-TECH-TR-PP-2007-00020, Rev 0 (Idaho Falls, ID: Global Nuclear Energy Partnership Technical Integration Office, Idaho National Laboratory, 25 July 2007), p. 177.Google Scholar
  2. 2.
    B. Hill, Argonne National Laboratory, private communication, 2007.Google Scholar
  3. 3.
    R.L. Huddleston and R.W. Swindeman, Materials and Design Bases Issues in ASME Code Case N-47, NUREG/CR-5955, ORNL/TM-12266 (April 1993).Google Scholar
  4. 4.
    Prototype Large Breeder Reactor Phase II Conceptual Design; Vol III Tradeoff Studies, General Electric Report, GEFR00099 (June 1977).Google Scholar
  5. 5.
    E. Hoffman, Estimated Cost for Low Conversion Ratio Burners, Argonne National Laboratory Report, ANL-AFCI-118 (June 2004), p. 15Google Scholar
  6. 6.
    C. Cawthorne and E.J. Fulton, “Voids in Irradiated Stainless Steels,” Nature, 216 (November 1967).Google Scholar
  7. 7.
    F.A. Garner, “Irradiation Performance of Cladding and Structural Steels in Liquid Metal Reactors,” Nuclear Materials, ed. B.R.T. Frost (Weinheim, Germany: VCH Veerlagsgesellschaft mbH, 1996), pp. 420–543.Google Scholar
  8. 8.
    J.J. Laidler and J.W. Bennett, “Core Material Studies Improve Fast Breeder Performance,” Nucl. Eng. Int., 25(301) (July 1980), pp. 31–36.Google Scholar
  9. 9.
    J.L. Strassland, R.W. Powell, and B.A. Chin, “An Overview of Neutron Irradiation Effects in LMFBR Materials,” J. of Nuclear Materials, 108–109 (1982), p. 299.Google Scholar
  10. 10.
    J.W. Bennett and K.E. Horton, “Material Requirements for Liquid Metal Fast Breeder Reactors,” Met. Trans. A., 9A (1978), p. 143.CrossRefGoogle Scholar
  11. 11.
    M.L. Hamilton et al., “Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications,” PNNL-13168 (2000).Google Scholar
  12. 12.
    F. Garner, “Insights on Radiation-Induced Dimensional Instability and Mechanical Properties of Austenitic Alloys Acquired after Closure of the US LMR Program” (Presentation at the GNEP Advanced Materials Workshop, ORNL, July 2007).Google Scholar
  13. 13.
    E.E. Bloom, S.J. Zinkle, and F.W. Wiffen, “Materials to Deliver the Promise of Fusion Power-Progress and Challenges,” J. of Nuclear Materials, 329–333 (2004), p. 12.CrossRefGoogle Scholar
  14. 14.
    S.J. Zinkle, “Advanced Materials for Fusion Technology,” Fusion Engg. and Design, 74 (2005), p. 31.CrossRefGoogle Scholar
  15. 15.
    T.M. Angeliu, J.T. Ward, and J.K. Witter, “Assessing the Effects of Radiation Damage on Ni-Base Alloys for the Prometheus Space Reactor System,” J. of Nuclear Materials, 366(2–3) (2007), p. 223.CrossRefGoogle Scholar
  16. 16.
    R.L. Klueh and D.R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (West Conshohocken, PA: ASTM, 2001).Google Scholar
  17. 17.
    S.A. Maloy, “Materials Issues in a High Power Spallation Target,” J. of Nuclear Materials, 343 (2005), p. 367.CrossRefGoogle Scholar
  18. 18.
    H. Kurishita et al., “Tensile Properties of Reduced Activation Fe-9Cr-2W Steels after FFTF Irradiation,” J. of Nuclear Materials, 212–215 (1994), pp. 730–735.CrossRefGoogle Scholar
  19. 19.
    Y. Katoh et al., “Microstructural Changes in Fe-10Cr-2Mo Steel by Neutron or Charged Particle Irradiation,” J. of Nuclear Materials, 191–194 (1992), pp. 1204–1208.CrossRefGoogle Scholar
  20. 20.
    S.A. Maloy et al., “Tensile Properties of the NLF Reduced Activation Ferritic/Martensitic Steels after Irradiation in a Fast Reactor Spectrum to a Maximum Dose of 67 dpa,” J. of Nuclear Materials, 341 (2005), pp. 141–147.CrossRefGoogle Scholar
  21. 21.
    S.A. Maloy et al., “The Effects of Fast Reactor Irradiation Conditions on the Tensile Properties of Two Ferritic/Martensitic Steels,” J. of Nuclear Materials, 356 (2006), pp. 62–69.CrossRefGoogle Scholar
  22. 22.
    M.B. Toloczko et al., “Comparison of Thermal Creep and Irradiation Creep of HT9 Pressurized Tubes at Test Temperatures from ∼490°C to 605°C,” Effects of Radiation on Materials: 20th International Symposium, ASTM STP 1405 (2002), pp. 557–569.Google Scholar
  23. 23.
    M.B. Toloczko and F.A. Garner, Stress and Temperature Dependence of Irradiation Creep of Selected FCC and BCC Steels at Low Swelling, ASTM STP 1447 (2004), pp. 454–467.Google Scholar
  24. 24.
    K.Q. Bagley et al., “European Development of Ferritic-Martensitic Steels for Fast Reactor Wrapper Applications,” Nuclear Energy, 27(5) (1988), pp. 295–303.Google Scholar
  25. 25.
    F. Masuyama, Advanced Heat Resistant Steel for Power Generation, ed. R. Viswanathan and J. Nutting (London: Institute of Materials, 1999), p. 33.Google Scholar
  26. 26.
    M. Horsten et al., Effects of Irradiation on Materials: 19 th International Symposium, Proceedings, ASTM STP 1366, ed. M.L. Hamilton et al. (West Conshohocken, PA: ASTM, 2000), p. 579.Google Scholar
  27. 27.
    R.L. Klueh and D.J. Alexander, J. of Nuclear Materials, 187 (1992), p. 60.CrossRefGoogle Scholar
  28. 28.
    T.R. Allen et al., “Radiation Resistance of Advanced Ferritic-Martensitic Steel HCM12A,” J. of ASTM International, 2(8) (September 2005), Paper ID JAI 12382.Google Scholar
  29. 29.
    K. Anderko et al., CETA-EinEntwicklungsschritt zu einem Schwach Activierbaren Martensitischen Chromstahl, Kernforschungszentrum Karlsruhe, KfK Reprot 5060 (June 1993).Google Scholar
  30. 30.
    D. Dulieu, K.W. Tupholme, and G.J. Butterworth, J. of Nuclear Materials, 141–143 (1986), p. 1097.CrossRefGoogle Scholar
  31. 31.
    D.S. Gelles, Reduced Activation Materials for Fusion Reactors, ASTM STP 1047, ed. R.L. Klueh et al. (Philadelphia, PA: ASTM, 1990), p. 113.Google Scholar
  32. 32.
    N.M. Ghoniem, A. Shabaik, and M.Z. Youssef, Proceedings of Topical Conference on Ferritic Steels for use in Nuclear Energy Technologies (Warrendale, PA: TMS, 1984), p. 201.Google Scholar
  33. 33.
    C.Y. Hsu and T.A. Lechtenberg, J. of Nuclear Materials, 141–143 (1986), p. 1107.Google Scholar
  34. 34.
    H. Kayano et al., J. of Nuclear Materials, 179–181 (1991), p. 445.Google Scholar
  35. 35.
    R.L. Klueh and E.E. Bloom, Nucl. Eng. Design/Fusion, 2 (1985), p. 383.CrossRefGoogle Scholar
  36. 36.
    T. Noda et al., J. of Nuclear Materials, 141–143 (1986), p. 1102.CrossRefGoogle Scholar
  37. 37.
    M. Tamura et al., J. of Nuclear Materials, 141–143 (1986), p. 1067.CrossRefGoogle Scholar
  38. 38.
    M. Rieth, B. Dafferner, and H.D. Röhrig, J. of Nuclear Materials, 233–237 (1996), p. 351.CrossRefGoogle Scholar
  39. 39.
    S. Ohtuska et al., Materials Transactions, 46(3) (2005), p. 1.Google Scholar
  40. 40.
    T.R. Allen et al., “Radiation Response of a 9 Cr Oxide Dispersion Strengthened ODS to Heavy Ion Irradiation,” submitted to J. of Nuclear Materials.Google Scholar
  41. 41.
    R.S. Barnes, “Embrittlement of Stainless Steels and Nickel-Based Alloys at High Temperature Induced by Neutron Radiation,” Nature, 206 (1963), p. 1307.CrossRefGoogle Scholar
  42. 42.
    P.J. Maziasz, Microstructural Stability and Control for Improved Irradiation Resistance and for High-Temperature Strength of Austenitic Stainless Steels, ASTM STP 979, ed. B.L. Bramfitt et al. (Philadelphia, PA: ASTM, 1986), p. 116.Google Scholar
  43. 43.
    P.J. Maziasz, “Developing Austenitic Stainless Steel for Improved Performance in Advanced Fossil Power Facilities,” J. of Metals, 41(7) (1989), p. 14.Google Scholar
  44. 44.
    T. Watanabe and S. Tsurekawa, “The Control of Brittleness and Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering,” Acta Mater., 47 (1999), pp. 4171–4185.CrossRefGoogle Scholar
  45. 45.
    G. Gupta and G.S. Was, “Interpretation of Improved Creep Properties of a 9Cr-1Mo-Nb-V (T91) Steel by Grain Boundary Engineering,” TMS Letters, 2 (2005), pp. 71–72.Google Scholar
  46. 46.
    L. Tan et al., “Microstructure Tailoring for Property Improvements by Grain Boundary Engineering,” submitted to J. of Nuclear Materials.Google Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • T. R. Allen
    • 1
    Email author
  • J. T. Busby
    • 2
  • R. L. Klueh
    • 2
  • S. A. Maloy
    • 3
  • M. B. Toloczko
    • 4
  1. 1.Engineering Physics DepartmentUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations