JOM

, Volume 59, Issue 5, pp 44–49

The use of solid-oxide-membrane technology for electrometallurgy

  • Uday B. Pal
  • Adam C. PowellIV
Overview Fundamentals of Electrochemical Processes

Abstract

Solid oxide membrane (SOM) technology has been employed in developing several new metal reduction technologies. This overview describes the SOM process for copper deoxidation and SOM technology for metal smelting, as well as applications to magnesium, titanium, and tantalum. The examples illustrate various configurations of the SOM, anode, and cathode that are best suited to the needs of each metal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Soral and U.B. Pal, “A Pilot Scale Trial of Improved Galvanic Deoxidation Process for Refining Molten Copper,” Metall. Mater. Trans., 30B(2) (1999), p. 307.Google Scholar
  2. 2.
    U.B. Pal, D.E. Woolley, and G.B. Kenney, “Emerging SOM Technology for the Green Synthesis of Metals from Oxides,” JOM, 53(10) (2001), p. 32.Google Scholar
  3. 3.
    A. Krishnan, X.G. Lu, and U.B. Pal, “Solid Oxide Membrane Process for Magnesium Production Directly from Magnesium Oxide,” Metall. Mater. Trans., 36B (2005), p. 463.Google Scholar
  4. 4.
    A. Krishnan, X.G. Lu, and U.B. Pal, “Solid Oxide Membrane (SOM) Technology for Environmentally Sound Production of Tantalum Metal and Alloys from their Oxide Sources,” Scand. J. Metall., 34(5) (2005), p. 293.CrossRefGoogle Scholar
  5. 5.
    R. DeLucas et al., “Cost-Effective Magnesium Oxide Recycling for Economic Viability of Magnesium Hydride Slurry Technology for Hydrogen Storage,” Proceedings of the Sohn International Symposium Adv. Proc. of Metals and Materials, Vol. 7, Industrial Practice, New, Improved and Existing Technologies: Non-Ferrous Materials Extraction and Processing, ed. F. Kongoli and R.G. Reddy (Warrendale, PA: TMS, 2006), p. 561.Google Scholar
  6. 6.
    A. Krishnan, “Solid Oxide Membrane Process for the Direct Reduction of Magnesium from Magnesium Oxide” (Ph.D. Thesis, Boston University, 2005).Google Scholar
  7. 7.
    M. Suput et al., “Solid Oxide Membrane Technology for Environmentally Sound Production of Titanium,” Proceedings of the Sohn International Symposium Adv. Proc. of Metals and Materials, Vol. 4, New, Improved and Existing Technologies: Non-Ferrous Materials Extraction and Processing, ed. F. Kongoli and R.G. Reddy (Warrendale, PA: TMS, 2006), p. 273.Google Scholar
  8. 8.
    Rachel DeLucas et al, “Modelling of Magnesium Extraction from Magnesium Oxide by the Solid Oxide Membrane (SOM) Process,” Proceedings of the Sohn International Symposium Adv. Proc. of Metals and Materials, Vol. 4, New, Improved and Existing Technologies: Non-Ferrous Materials Extraction and Processing, ed. F. Kongoli and R.G. Reddy (Warrendale, PA: TMS, 2006), p. 285.Google Scholar
  9. 9.
    W. Kroll, Tr. Electrochem. Soc., 78 (1940), p. 35.Google Scholar
  10. 10.
  11. 11.
    A.C. Powell, W. Pongsaksawad, and U.B. Pal, “Phase Field Modeling of Phase Boundary Shape and Topology Changes Due to Electrochemical Reactions in Solid and Liquid Systems,” Proceedings of the Sohn International Symposium Adv. Proc. of Metals and Materials, Vol. 3: Thermo and Physicochemical Principles: Special Materials; Aqueous and Electrochemical Processing, ed. F. Kongoli and R.G. Reddy (Warrendale, PA: TMS, 2006), p. 623.Google Scholar
  12. 12.
    The Economics of Tantalum (London: Roskill Information Systems Ltd., 2002).Google Scholar
  13. 13.
    D.K. Bose and C.K. Gupta, Mineral Processing and Extractive Metallurgy Review, 22 (2001), pp. 389–412.Google Scholar
  14. 14.
    L.D. Cunningham, Tantalum Mineral Commodity Summaries (Washington, D.C.: U.S. Geological Survey, 2004).Google Scholar
  15. 15.
    G.L. Miller, Tantalum and Niobium (London, Butterworth Scientific Publications, 1959).Google Scholar
  16. 16.
    K.D. Moser, JOM, 51(4) (1999), pp. 29–31.Google Scholar
  17. 17.
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature, 407 (2000), p. 361.CrossRefADSGoogle Scholar
  18. 18.
    X.Y. Yan and D.J. Fray, Metall. Mater. Trans., 33B (2002), p. 685.Google Scholar
  19. 19.
    G.Z. Chen, E. Gordo, and D.J. Fray, Metall. Mater. Trans., 35B (2004), p. 223.Google Scholar
  20. 20.
    U.B. Pal, A. Krishnan, and C.P. Manning, Proceedings of the Yazawa International Symposium on Metallurgical and Materials Processing, ed. F. Kongoli et al. (Warrendale, PA: TMS, 2003), p. 351.Google Scholar
  21. 21.
    U.B. Pal et al., EPD Congress 2004, ed. Mark Schlesinger (Warrendale, PA: TMS, 2004), p. 57.Google Scholar
  22. 22.
    K.E. Oberg, W.M. Boorstein, and R.A. Rapp, Metall. Mater. Trans., 4 (1973), p. 75.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Uday B. Pal
    • 1
  • Adam C. PowellIV
    • 2
  1. 1.Department of Manufacturing Engineering at Boston UniversityBrooklineUSA
  2. 2.Veryst Engineering LLCNeedhamUSA

Personalised recommendations