JOM

, Volume 59, Issue 3, pp 39–42 | Cite as

Carbon nanotube arrays for photovoltaic applications

  • R. E. Camacho
  • A. R. Morgan
  • M. C. Flores
  • T. A. McLeod
  • V. S. Kumsomboone
  • B. J. Mordecai
  • R. Bhattacharjea
  • W. Tong
  • B. K. Wagner
  • J. D. Flicker
  • S. P. Turano
  • W. J. Ready
Research Summary Nanomaterials for Electronic Applications

Abstract

Vertically aligned periodic arrays of carbon nanotubes (CNTs) are used to create topographically enhanced light-trapping photovoltaic cells. The CNTs form the back contact of the device and serve as a scaffold to support the photoactive heterojunction. Molecular beam epitaxy is used to deposit CdTe and CdS as the p/n-type materials and ion-assisted deposition is used to deposit a conformal coating of indium-tin oxide as the transparent top contact. X-ray diffraction data shows (111) texture of the CdTe. Photocurrent produced “per cm2 of footprint” for the CNT-based device is 63 times that of a commercially available planar single crystal silicon device.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kim and D. Kim, “Influence of CdS Heat Treatment on the Microstructure of CdS and the Performance of CdS/CdTe Solar Cells,” Solar Energy Materials & Solar Cells, 67(1–4) (2001), pp. 297–304.CrossRefGoogle Scholar
  2. 2.
    J. Lee, “Comparison of CdS Films Deposited by Different Techniques: Effects on CdTe Solar Cell,” Applied Surface Science, 252(5) (2005), pp. 1398–1403.CrossRefADSGoogle Scholar
  3. 3.
    J. Terrazas et al., “Ordered Polycrystalline Thin Films for High Performance CdTe/CdS Solar Cells,” Thin Solid Films, 490(2) (2005), pp. 146–153.CrossRefGoogle Scholar
  4. 4.
    L. Worschech et al., “Cadmium Vacancy Related Defects in MBE Grown CdTe,” Journal of Crystal Growth, 161(1–4) (1996), pp. 134–138.CrossRefGoogle Scholar
  5. 5.
    D. Niles and H. Hochst, “ZnTe. A Potential Interlayer to Form Low Resistance Back Contacts in CdS/CdTe Solar Cells,” Journal of Applied Physics, 73(12) (1993), pp. 8381–8385.CrossRefADSGoogle Scholar
  6. 6.
    U. Jahn et al., “Doping and Intermixing in CdS/CdTe Solar Cells Fabricated under Different Conditions,” Journal of Applied Physics, 90(5) (2001), pp. 2553–2558.CrossRefADSGoogle Scholar
  7. 7.
    P. Boieriu et al., “Wurtzite CdS on CdTe Grown by Molecular Beam Epitaxy,” Journal of Electronic Materials, 29(6) (2000), p. 718.CrossRefADSGoogle Scholar
  8. 8.
    M. Aslan et al., “Sulfur Diffusion in Polycrystalline Thin-Film CdTe Solar Cells,” Materials Research Society Symposium Proceedings (Warrendale, PA: MRS, 1997), pp. 203–208.Google Scholar
  9. 9.
    J. Lee, “Photovoltaic Effect in Ideal Carbon Nanotube Diodes,” Applied Physics Letters, 87 (2005), pp. 73101–73103.CrossRefGoogle Scholar
  10. 10.
    E. Katz, “Fullerenes for Photovoltaics,” Encyclopedia of Nanoscience and Nanotechnology, vol. 3, ed. Hari Singh Nalwa (Valencia, CA: American Scientific Publishers, 2004), pp. 661–683.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • R. E. Camacho
    • 1
  • A. R. Morgan
    • 1
  • M. C. Flores
    • 1
  • T. A. McLeod
    • 1
  • V. S. Kumsomboone
    • 1
  • B. J. Mordecai
    • 1
  • R. Bhattacharjea
    • 1
  • W. Tong
    • 1
  • B. K. Wagner
    • 1
  • J. D. Flicker
    • 1
  • S. P. Turano
    • 1
  • W. J. Ready
    • 1
  1. 1.Georgia Tech Research InstituteAtlantaUSA

Personalised recommendations