Advertisement

JOM

, Volume 59, Issue 1, pp 23–29 | Cite as

Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy

  • D. C. Hurley
  • M. Kopycinska-Müller
  • A. B. Kos
Overview Scanning Probe Microscopy for Materials Science

Abstract

Tools are being developed that use the atomic-force microscope (AFM) to measure mechanical properties with nanoscale spatial resolution. Contact-resonance-spectroscopy techniques such as atomic-force acoustic microscopy involve the vibrational modes of the AFM cantilever when its tip is in contact with a material. These methods enable quantitative maps of local mechanical properties such as elastic modulus and thin-film adhesion. The information obtained furthers the understanding of patterned surfaces, thin films, and nanoscale structures.

Keywords

Resonant Mode Contact Stiffness Indentation Modulus National Nanotechnology Initiative Normalize Contact Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Instrumentation and Metrology for Nanotechnology, Report of the National Nanotechnology Initiative Workshop (27–29 January 2004, Gaithersburg, MD); available at www.nano.gov/NNI_Instrumentation_Metrology_rpt.pdf" Key=".Google Scholar
  2. 2.
    W.C. Oliver and G.M. Pharr, J. Mater. Res., 7(6) (1992), pp. 1564–1583.ADSGoogle Scholar
  3. 3.
    S.A. Syed Asif et al., J. Appl. Phys., 90(3) (2001), pp. 1192–1200.CrossRefADSGoogle Scholar
  4. 4.
    O. Kraft and C.A. Volkert, Adv. Engng. Mater., 3(3) (2001), pp. 99–110.CrossRefGoogle Scholar
  5. 5.
    A.G. Every, Meas. Sci. Technol., 13(5) (2002), pp. R21–R39.CrossRefADSGoogle Scholar
  6. 6.
    G. Binning et al., Phys. Rev. Lett., 56(9) (1986), pp. 930–933.CrossRefADSGoogle Scholar
  7. 7.
    P. Maivald et al., Nanotechnology, 2(2) (1991), pp. 103–106.CrossRefADSGoogle Scholar
  8. 8.
    M. Troyon et al., Nanotechnology, 8(4) (1997), pp. 1630–171.CrossRefGoogle Scholar
  9. 9.
    N.A. Burnham et al., J. Vac. Sci. Technol. B., 14(2) (1996), pp. 794–799.CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Rosa-Zeiser et al., Meas. Sci. Technol., 8(11) (1997), pp. 1333–1338.CrossRefADSGoogle Scholar
  11. 11.
    Q. Zhong et al., Surface Science, 290(1–2) (1993), pp. L688–L692.CrossRefGoogle Scholar
  12. 12.
    R.E. Geer et al., J. Appl. Phys., 91(7) (2002), pp. 4549–4555.CrossRefADSGoogle Scholar
  13. 13.
    M.T. Cuberes et al., J. Phys. D: Appl. Phys., 33(19) (2000), pp. 2347–2355.CrossRefADSGoogle Scholar
  14. 14.
    K. Yamanaka et al., Appl. Phys. Lett., 78(13) (2001), pp. 1939–1941.CrossRefADSGoogle Scholar
  15. 15.
    U. Rabe et al., J. Phys. D: Appl. Phys., 35(20) (2002), pp. 2621–2635.CrossRefADSGoogle Scholar
  16. 16.
    K. Yamanaka and S. Nakano, Appl. Phys., A 66(1) (1998), pp. S313–S317.CrossRefADSGoogle Scholar
  17. 17.
    K.B. Crozier et al., Appl. Phys. Lett., 76(14) (2000), pp. 1950–1952.CrossRefADSGoogle Scholar
  18. 18.
    D.C. Hurley et al., J. Appl. Phys., 94(4) (2003), pp. 2347–2354.CrossRefADSGoogle Scholar
  19. 19.
    U. Rabe et al., Ultrasonics, 38(1–8) (2000), pp. 430–437.CrossRefGoogle Scholar
  20. 20.
    U. Rabe, “Atomic Force Acoustic Microscopy,” Applied Scanning Probe Methods II, ed. B. Bushan and H. Fuchs (New York: Springer, 2006), pp. 37–90.CrossRefGoogle Scholar
  21. 21.
    R. Arinero and G. Lévêque, Rev. Sci. Instr., 74(1) (2003), pp. 104–111.CrossRefADSGoogle Scholar
  22. 22.
    K.L. Johnson, Contact Mechanics (Cambridge, U.K.: Cambridge University Press, 1985), pp. 84–99.zbMATHGoogle Scholar
  23. 23.
    J.J. Vlassak and W.D. Nix, Phil. Mag. A, 67(5) (1993), pp. 1045–1056.Google Scholar
  24. 24.
    U. Rabe et al., Surf. Interface Anal., 33(2) (2002), pp. 65–70.CrossRefGoogle Scholar
  25. 25.
    M. Prasad et al., Geophys. Res. Lett., 29(8) (2002), pp. 1172 1–4.CrossRefGoogle Scholar
  26. 26.
    K. Yamanaka et al., Rev. Sci. Instr., 71(6) (2000), pp. 2403–2408.CrossRefADSGoogle Scholar
  27. 27.
    D.C. Hurley et al., Meas. Sci. Technol., 16(11) (2005), pp. 2167–2172.CrossRefGoogle Scholar
  28. 28.
    M. Kopycinska-Müller et al., Nanotechnology, 16(6) (2005), pp. 703–709.CrossRefADSGoogle Scholar
  29. 29.
    D. Passeri et al., Rev. Sci. Instr., 76(9) (2005), pp. 093904 1–6.CrossRefGoogle Scholar
  30. 30.
    M. Kopycinska-Müller et al., Ultramicroscopy, 106(6) (2006), pp. 466–474.PubMedCrossRefGoogle Scholar
  31. 31.
    D.C. Hurley et al., Appl. Surf. Sci., 253(3) (2006) pp. 1274–1281.CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    U. Rabe et al., J. Vac. Sci. Technol. B, 15(4) (1997), pp. 1506–1511.CrossRefGoogle Scholar
  33. 33.
    T. Tsuji and K. Yamanaka, Nanotechnology, 12(3) (2001), pp. 301–307.CrossRefADSGoogle Scholar
  34. 34.
    D. Passeri et al., Appl. Phys. Lett., 88(12) (2006), pp. 121910 1–3.CrossRefGoogle Scholar
  35. 35.
    T. Tsuji et al., Appl. Phys. Lett., 87(7) (2005), pp. 071909 1–3.CrossRefGoogle Scholar
  36. 36.
    D.C. Hurley et al., Appl. Phys. Lett., 89(2) (2006), pp. 021911 1–3.CrossRefGoogle Scholar
  37. 37.
    Y. Zheng et al., J. Appl. Phys., in press (2006).Google Scholar
  38. 38.
    A.F. Sarioglu et al., Appl. Phys. Lett., 84(26) (2004), pp. 5368–5370.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • D. C. Hurley
    • 1
  • M. Kopycinska-Müller
    • 1
  • A. B. Kos
    • 1
  1. 1.National Institute of Standards and TechnologyBoulderUSA

Personalised recommendations