Advertisement

JOM

, Volume 58, Issue 11, pp 67–70 | Cite as

Metal-matrix composites in ground transportation

  • N. Chawla
  • K. K. Chawla
Overview Low-Cost Composites in Vehicle Manufacture

Abstract

Metal-matrix composites (MMCs) are used in a variety of automotive and other ground transp ortation applications. This article provides a brief overview of the major applications of MMCs in ground transportation. The main attractive features of MMCs are: high strength-to-weight ratio, enhanced mechanical and thermal properties over conventional materials, improved fatigue and creep characteristics, better wear resistance, and general tailorability of properties. Because the transportation industry is extremely cost-sensitive, reducing the manufacturing costs of MMC components will aid in the use of MMCs.

Keywords

Cast Iron Spheroidal Graphite Iron Brake Disk Cylinder Liner Railway Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Chawla and K.K. Chawla, Metal Matrix Composites (New York: Springer, 2006).Google Scholar
  2. 2.
    A. Evans, C.S. Marchi, and A. Mortensen, Metal Matrix Composites in Industry (Dordrecht, the Netherlands: Kluwer Academic Publishers, 2003).Google Scholar
  3. 3.
    Business Communications Company, RGB-108N Metal Matrix Composites in the 21 st Century: Markets and Opportunities (2006).Google Scholar
  4. 4.
    T. Donomoto et al. SAE Tech. Paper no. 83052 (Warrendale, PA: SAE International, 1983).Google Scholar
  5. 5.
    W.H. Hunt and D.B. Miracle, ASM Handbook—Composites, vol. 21 (Materials Park, OH: ASM International, 2001), pp. 1029–1032.Google Scholar
  6. 6.
    W. Hoover Proceedings of the 12th Riso International Symposium, ed. N. Hansen et al (Roskilde, Denmark: Risø National Laboratory, 1991), pp. 387–392.Google Scholar
  7. 7.
    J.E. Allison, J.W. Jones, and L.C. Davis, Composites Engineering Handbook (New York: Marcel Dekker, 1997), pp. 975–980.Google Scholar
  8. 8.
    M.J. Koczak et al., Fundamentals of Metal Matrix Composites (Stoneham, MA: Butterworth-Heinemann, 1993).Google Scholar
  9. 9.
    N. Chawla, J.J. Williams, and R. Saha, J. Light Metals, 2 (2002), pp. 215–227.CrossRefGoogle Scholar
  10. 10.
    K.K. Chawla and N. Chawla, Kirk-Othmer Encyclopedia (New York: John-Wiley, 2004).CrossRefGoogle Scholar
  11. 11.
    A.P. Divecha, S.G. Fishman, and S.D. Kamarkar, J. Metals, 33 (9) (1981), p. 12.Google Scholar
  12. 12.
    Y. Tsunekawa et al., J. Mater. Sci. Lett., 7 (1988). pp. 830–832.CrossRefGoogle Scholar
  13. 13.
    D. Leitlmeier, H.P. Degischer, and H. Flankl, Adv. Eng. Mater., 4 (2002), pp. 735–740.CrossRefGoogle Scholar
  14. 14.
    N. Babcsan et al., Adv. Eng. Mater., 6 (2004), pp. 421–428.CrossRefGoogle Scholar
  15. 15.
    T. Zeuner et al., Mater. Sci. Tech., 14 (1998), pp. 857–863.Google Scholar

Copyright information

© TMS 2006

Authors and Affiliations

  • N. Chawla
    • 1
  • K. K. Chawla
    • 2
  1. 1.School of Materials at Arizona State UniversityUSA
  2. 2.Department of Materials Science and Engineering at the University of Alabama at BirminghamBirminghamUSA

Personalised recommendations