JOM

, Volume 58, Issue 4, pp 33–39 | Cite as

Producing bulk ultrafine-grained materials by severe plastic deformation

  • Ruslan Z. Valiev
  • Yuri Estrin
  • Zenji Horita
  • Terence G. Langdon
  • Michael J. Zechetbauer
  • Yuntian T. Zhu
Overview Nanostructured Materials

Abstract

This overview highlights very recent achievements and new trends in one of the most active and developing fields in modern materials science: the production of bulk ultrafine-grained (UFG) materials using severe plastic deformation (SPD). The article also summarizes the chronology of early work in SPD processing and presents clear and definitive descriptions of the terminology currently in use in this research area. Special attention is given to the principles of the various SPD processing techniques as well as the major structural features and unique properties of bulk UFG materials that underlie their prospects for widespread practical utilization.

References

  1. 1.
    T.C. Lowe and R.Z. Valiev, eds., Investigations and Applications of Severe Plastic Deformation (Dordrecht, the Netherlands, Kluwer, 2000).Google Scholar
  2. 2.
    M.J. Zehetbauer and R.Z. Valiev, eds., Nanomaterials by Severe Plastic Deformation (Weinheim, Germany, Wiley-VCH, 2004).Google Scholar
  3. 3.
    Z. Horita, ed., Nanomaterials by Severe Plastic Deformation (Uetikon-Zürich, Switzerland: Trans Tech Publications, 2005).Google Scholar
  4. 4.
    R.Z. Valiev, Nature Mater., 3 (2004), p. 511.CrossRefGoogle Scholar
  5. 5.
    R.Z. Valiev, R.R. Mulyukov, and V.V. Ovchinnikov, Phil. Mag. Lett., 62 (1990), p. 253.Google Scholar
  6. 6.
    R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Mater. Sci. Eng., A137 (1991), p. 35.CrossRefGoogle Scholar
  7. 7.
    R.S. Musalimov and R.Z. Valiev, Scripta Metall. Mater., 27 (1992), p. 1685.CrossRefGoogle Scholar
  8. 8.
    R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Mater. Sci. Eng., A168 (1993), p. 141.CrossRefGoogle Scholar
  9. 9.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 45 (2000), p. 103.CrossRefGoogle Scholar
  10. 10.
    V.M. Segal et al., Russian Metall., 1 (1981), p. 99.Google Scholar
  11. 11.
    Y. Iwahashi et al., Scripta Mater., 35 (1996), p. 143.CrossRefGoogle Scholar
  12. 12.
    V.M. Segal, Mater. Sci. Eng., A197 (1995), p. 157.CrossRefGoogle Scholar
  13. 13.
    M. Furukawa et al., Mater. Sci. Eng., A257, (1998), p. 328.CrossRefGoogle Scholar
  14. 14.
    A.P. Zhilyaev et al., Acta Mater., 51 (2003), p. 753.CrossRefGoogle Scholar
  15. 15.
    A. Vorhauer and R. Pippan, Scripta Mater., 51 (2004), p. 921.CrossRefGoogle Scholar
  16. 16.
    T. Hebesberger et al., Acta Mater., 53 (2005), p. 393.CrossRefGoogle Scholar
  17. 17.
    G. Sakai et al., Mater. Sci. Eng., A406 (2005), p. 268.CrossRefGoogle Scholar
  18. 18.
    Y. Saito et al., Acta Mater., 47 (1999), p. 579.CrossRefGoogle Scholar
  19. 19.
    S.H. Lee et al., Mater. Trans. JIM, 40 (1999), p. 1422.Google Scholar
  20. 20.
    O.R. Valiakhmetov, R.M. Galeyev, and G.A. Salishchev, Fiz. Metall. Metalloved, 10 (1990), p. 204.Google Scholar
  21. 21.
    R.M. Galeyev, O.R. Valiakhmetov, and G.A. Salishchev, Russian Metall., 4 (1990), p. 97.Google Scholar
  22. 22.
    S.V. Zherebtsov et al., Scripta Mater., 51 (2004), p. 1147.CrossRefGoogle Scholar
  23. 23.
    J. Richert and M. Richert, Aluminium, 62 (1986), p. 604.Google Scholar
  24. 24.
    M. Richert et al., Mater. Sci. Eng., A355, (2003), p. 180.CrossRefGoogle Scholar
  25. 25.
    Y.T. Zhu, et al., Metall. Mater. Trans., 32A, (2001), p. 1559.CrossRefGoogle Scholar
  26. 26.
    J. Huang et al., Acta Mater., 49, (2001), p. 1497.CrossRefGoogle Scholar
  27. 27.
    D.H. Shin et al., Mater. Sci. Eng., A298 (2002), p. 98.Google Scholar
  28. 28.
    J.Y. Huang et al., Mater. Sci. Eng., A371 (2004), p. 35.CrossRefGoogle Scholar
  29. 29.
    D.V. Orlov et al., Ultrafine Grained Materials III, ed., Y.T. Zhu et al. (Warrendale, PA: TMS, 2004), p. 457.Google Scholar
  30. 30.
    J.T. Wang, Mater. Sci. Forum, 503–504 (2006), p. 363.Google Scholar
  31. 31.
    P.W. Bridgman, Studies in Large Plastic Flow and Fracture (New York: McGraw-Hill, 1952).Google Scholar
  32. 32.
    A.V. Sergueeva et al., Mater. Sci. Eng., A339 (2003), p. 159.CrossRefGoogle Scholar
  33. 33.
    X.Z. Liao et al., Appl. Phys. Lett., 84 (2004), p. 592.CrossRefGoogle Scholar
  34. 34.
    E. Schafler et al., Mater. Sci. Eng. A410–411 (2005), p. 169.Google Scholar
  35. 35.
    S.V. Dobatkin, V.V. Zakharov, and L.L. Rokhlin, Mater. Sci. Forum, 503–504 (2006), p. 399.Google Scholar
  36. 36.
    R. Lapovok et al., J. Mater. Sci., 40 (2005), p. 1.CrossRefGoogle Scholar
  37. 37.
    Y. Estrin et al., Mater. Sci. Forum, 503–504 (2006), p. 675.Google Scholar
  38. 38.
    T. Ungar and M. Zehetbauer, Scripta Mater., 35 (1996), p. 1467.CrossRefGoogle Scholar
  39. 39.
    M. Zehetbauer et al., Acta. Mater., 47 (1999), p. 1053.CrossRefGoogle Scholar
  40. 40.
    X.Z. Liao et al., Appl. Phys. Lett., 88 (2006), p. 021909.CrossRefGoogle Scholar
  41. 41.
    R.Z. Valiev et al., J. Mater. Res., 17 (2002), p. 5.CrossRefGoogle Scholar
  42. 42.
    Y. Wang et al., Nature, 419 (2002), p. 912.CrossRefGoogle Scholar
  43. 43.
    Y.T. Zhu and X. Liao, Nature Mater., 3 (2004), p. 351.CrossRefGoogle Scholar
  44. 44.
    Z. Horita et al., Adv. Mater., 17 (2005), p. 1599.CrossRefGoogle Scholar
  45. 45.
    N.Q. Chinh et al., Adv. Mater., 18 (2006), p. 34.CrossRefGoogle Scholar
  46. 46.
    Y.T. Zhu et al., J. Appl. Phys., 98 (2005), p. 034319.CrossRefGoogle Scholar
  47. 47.
    H.W. Höppel et al., Intl. J. Fatigue, (2006) in press.Google Scholar
  48. 48.
    R.Z. Valiev et al., Scripta Mater., 47 (1997), p. 1945.Google Scholar
  49. 49.
    C. Xu et al., J. Mater. Eng. Perform., 13 (2004), p. 683.CrossRefGoogle Scholar
  50. 50.
    H. Ferkel et al., Mater. Sci. Eng., A348 (2003), p. 100.CrossRefGoogle Scholar
  51. 51.
    V. Skripnyuk et al., Acta Mater., 52 (2004), p. 405.CrossRefGoogle Scholar
  52. 52.
    V.G. Pushin et al., Ultrafine Grained Materials III, ed. Y.T. Zhu et al. (Warrendale, PA: TMS, 2004), p. 481.Google Scholar
  53. 53.
    A. Vorhauer et al., Mater. Sci. Forum, 503–504 (2005), p. 299.Google Scholar
  54. 54.
    T.C. Lowe and Y.T. Zhu, Adv. Eng. Mater., 5 (2003), p. 373.CrossRefGoogle Scholar
  55. 55.
    X. Sauvage, F. Wetscher, and P. Pareige, Acta Mater., 53 (2005), p. 2127.Google Scholar
  56. 56.
    Yu. Ivanisenko et al., Acta Mater., 51 (2003), p. 5555.CrossRefGoogle Scholar
  57. 57.
    N. Boucharat et al., Scripta Mater., 53 (2005), p. 823.CrossRefGoogle Scholar
  58. 58.
    M. Zehetbauer et al., Mater. Sci. Forum, 503–504 (2006), p. 57.Google Scholar
  59. 59.
    Y.T. Zhu, T.C. Lowe, and T.G. Langdon, Scripta Mater., 51 (2004), p. 825.CrossRefGoogle Scholar
  60. 60.
    T.C. Lowe and Y.T. Zhu, Nanomaterials by Severe Plastic Deformation, ed. M.J. Zehetbauer and R.Z. Valiev (Weinheim, Germany: Wiley-VCH, 2004), p. 789.Google Scholar
  61. 61.
    R.Z. Valiev, Mater. Sci. Forum, 503–504 (2006), p. 3.Google Scholar
  62. 62.
    T.C. Lowe, Mater. Sci. Forum, 503–504 (2006), p. 355.CrossRefGoogle Scholar
  63. 63.
    G.J. Raab et al., Mater. Sci. Eng., A382 (2004), p. 30.CrossRefGoogle Scholar
  64. 64.
    V.V. Latysh et al., Mater. Sci. Forum, 503–504 (2006), p. 763.Google Scholar
  65. 65.
    R. Srinivasan, B. Cherukuri, and P.K. Chaudhury, Mater. Sci. Forum, 503–504 (2006), p. 371.Google Scholar
  66. 66.
    Y. Estrin et al., Nanostructured Materials by High-Pressure Severe Plastic Deformation, ed. Y.T. Zhu and V. Varyukin (Dordrecht, the Netherlands: Springer, 2006), p. 39.CrossRefGoogle Scholar
  67. 67.
    Y. Estrin et al., Mater. Sci. Eng., A410–411 (2005). p. 165.Google Scholar

Copyright information

© Minerals, Metals & Materials Society 2006

Authors and Affiliations

  • Ruslan Z. Valiev
    • 1
  • Yuri Estrin
    • 2
  • Zenji Horita
    • 3
  • Terence G. Langdon
    • 4
  • Michael J. Zechetbauer
    • 5
  • Yuntian T. Zhu
    • 6
  1. 1.Institute of Physics of Advanced Materials at Ufa, State Aviation Technical University in UfaRussia
  2. 2.Institute of Materials Science and Technology at Clausthal University of Technology in Clausthal-ZellerfeldGermany
  3. 3.Department of Materials Science and EngineeringFaculty of Engineering at Kyushu University in FukuokaJapan
  4. 4.Departments of Aerospace & Mechanical Engineering and Mateirals Science at the University of Southern California in Los Angeles
  5. 5.Department of Materials Physics at the University of Vienna in WienAustria
  6. 6.Materials Science & Technology Division at Los Alamos National Laboratory in Los Alamos

Personalised recommendations