Advertisement

JOM

, 58:28 | Cite as

Metals and alloys nanostructured by severe plastic deformation: Commercialization pathways

  • Terry C. Lowe
Overview Nanostructured Materials

Abstract

Severe plastic deformation, which refines grain size and introduces nanoscale features in metals and alloys, offers the prospect of enhancing metal properties beyond the levels otherwise attainalble. It allows stable deformation to larger strains than most conventional metal-forming methods, there by increasing the degree of strengthening possible. Before aprocess can be commercialized. it must be established that there are significant market drivers. Once those drivers are established, an array of factors must be considered that can impede or augment commercialization. This work will introduce four of these: competition from other materials, appropriability, maturity of design paradigm, and distribution of complementary assets.

Keywords

Severe Plastic Deformation Equal Channel Angular Pressing Strategic Alliance Accumulative Roll Bonding Niche Market 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.C. Lowe and Y.T. Zhu, Adv. Eng. Mat., 5 (5) (2003) pp. 373–378.CrossRefGoogle Scholar
  2. 2.
    T.L. Brown et al, J. Mater. Res., 17 (110) (2002) pp. 2484–2488.CrossRefGoogle Scholar
  3. 3.
    R. Valiev Nat. Mater., 3 (8) (2004), pp. 511–516.CrossRefGoogle Scholar
  4. 4.
    K. Lu, Materials Science Forum, 475–479 (I) (2005) pp. 21–24.Google Scholar
  5. 5.
    Y.T. Zhu and J. Huang, Ultrafine Grained Materials II (Warrendale PA. TMS, 2002), pp. 331–340.Google Scholar
  6. 6.
    E. Ma, Met. Mater.-Int., 10 (6) (2004) pp. 527–531.CrossRefGoogle Scholar
  7. 7.
    T. Lowe, Adv. Mater. Process., 160 (1) (2002), p. 63.Google Scholar
  8. 8.
    T.C. Lowe et al: NATO Science Partnership Sub-Series 3: High Technology 80 (2000) p. 347.Google Scholar
  9. 9.
    O.A. Kaibyshev, J. Mater. Process. Tech., 117 (3) (2001), pp. 300–306.CrossRefGoogle Scholar
  10. 10.
    Y.T.T. Zhu and T.C. Lowe, Mat. Sci. Eng. A-Struct., 291 (1) (2000) p. 46–53.CrossRefGoogle Scholar
  11. 11.
    R. Kaibyshev and I. Mazurina, Mat. Sci. Forum, 467/470 (2004) pp. 1251–1260.Google Scholar
  12. 12.
    A.L.M. Costa et al., Mat. Sci. Eng. A, 406 (1–2) (2005) p. 279–285.CrossRefGoogle Scholar
  13. 13.
    E.F. Rauch, L. Dupuy, and J.J. Blandin, Key Eng. Mat., 230/232, (2002) pp. 239–242.CrossRefGoogle Scholar
  14. 14.
    T.C. Lowe and R.Z. Valiev, JOM 56 (10) (2004), pp. 64–68.Google Scholar
  15. 15.
    X.Z. Liao, et al., J. Appl. Phys., 96 (1) (2004) pp. 636–640.CrossRefGoogle Scholar
  16. 16.
    H.S. Kim, J. Mater. Process. Tech., 113 (1–3) (2001) pp. 617–621.CrossRefGoogle Scholar
  17. 17.
    A.P. Zhilyaev et al., Acta Mater., 51 (3) (2003), pp 753–765.CrossRefGoogle Scholar
  18. 18.
    D.V. Orlov, et al., Ultrafine Grained Materials III, (Warrendale, PA: TMS 2004) pp. 457–462.Google Scholar
  19. 19.
    G. Krallics and J.G. Lenard, J. Mater. Process. Tech., 152 (2) (2004) pp. 154–161.CrossRefGoogle Scholar
  20. 20.
    S.H. Lee, T. Sakai, and D.H. Shin, Mater. Trans., 44 (7) (2003) pp. 1382–1385.CrossRefGoogle Scholar
  21. 21.
    B. Cherukuri, T.S. Nedkova, and R. Srinivasan, Mater. Sci. Eng. A, 410–411 (2005) pp. 394–397.Google Scholar
  22. 22.
    T.C. Lowe, Mater. Sci. Forum ed. Z. Horita, 503–504, (2006) pp 355–362.Google Scholar
  23. 23.
    D.J. Teece, Res. Policy, 15 (6) (1986) pp. 186–203.CrossRefGoogle Scholar
  24. 24.
    J. Dutkiewicz et al., Physica Status Solidi A, 202 (12) (2005), pp. 2309–2320.CrossRefGoogle Scholar
  25. 25.
    M.L. Tushman and P. Anderson, Admin. Sci. Quart., (1986) pp 439–465.Google Scholar

Copyright information

© Minerals, Metals & Materials Society 2006

Authors and Affiliations

  • Terry C. Lowe
    • 1
  1. 1.Science and Technology Base ProgramsLos Alamos National LaboratoryLos Alamos

Personalised recommendations