, Volume 58, Issue 6, pp 39–42 | Cite as

High-density plasma-arc heating studies of FePt thin films

  • Amanda Cole
  • Gregory B. Thompson
  • J. W. Harrell
  • J. Weston
  • Ronald Ott
Research Summary Rapid/Pulse Thermal Processing


The effect of pulsed-thermal-processing with high-density plasma arc heating is discussed for 20 nm thick nanocrystalline FePt thin films. The dependence of the A1→L10 phase transformation on pulsed time and radiant energy of the pulse is quantified through x-ray diffraction and alternating gradient magnetometry. For 100 ms and 250 ms pulse widths, the phase transformation was observed. Higher radiant energy densities resulted in a larger measured coercivity associated with the L10 phase.


FePt Rapid Thermal Annealing FePd Perpendicular Magnetic Record Excimer Laser Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taken from the home page of Seagate, a leading hard drive manufacturer: Scholar
  2. 2.
    J. Numazawa and H. Ohshima, “Prospect of 1 T bits/in2 Video Data Storage using Perpendicular Magnetic Recording Tape,” J. Magn. Magn. Mater., 176 (1) (1997), pp. 1–7.CrossRefGoogle Scholar
  3. 3.
    M. Mallary, A. Torabi and M. Benakli, “One Terabit per Square Inch Perpendicular Recording Conceptual Design,” IEEE T. Magn. 38 (2002), pp. 1719–1724.CrossRefGoogle Scholar
  4. 4.
    D. Weller and A. Moser, “Thermal Effect Limits in Ultrahigh-Density Magnetic Recording,” IEEE T. Magn., 35 (6) (1999), pp. 4423–4439.CrossRefGoogle Scholar
  5. 5.
    K. Ouchl, “Recent Advancements in Perpendicular Magnetic Recording,” IEEE T. Magn. 37 (41) (2001), pp. 1217–1222.CrossRefGoogle Scholar
  6. 6.
    D. Weller et al., “High K Materials Approach to 100 Gbits/in2,” IEEE T. Magn., 36 (1) (2000), pp. 10–15.CrossRefGoogle Scholar
  7. 7.
    B. Zhang and W.A. Soffa, “The Structure and Properties of L1, Ordered Ferromagnets-CoPt, FePt, FePd, and MnAl,” Scripta Metall., 30 (6) (1994), pp. 683–688.CrossRefGoogle Scholar
  8. 8.
    D.E. Laughlin et al., “Crystallographic Aspects of L10 Magnetic Materials,” Scripta Mater., 53 (4) (2005), pp. 383–388.CrossRefGoogle Scholar
  9. 9.
    C.-M. Kuo, P.C. Kuo, and H.-C. Wu, “Microstructure and Magnetic Properties of Fe100−x Pt, Alloy Films,” J. Appl. Phys., 85 (4) (1999), pp. 2264–2269.CrossRefGoogle Scholar
  10. 10.
    M.F. Toney et al., “Thickness and Growth Temperature Dependence of Structure and Magnetism in FePt Thin Films,” J. Appl. Phys., 93 (12) (2003), pp. 9902–9907.CrossRefGoogle Scholar
  11. 11.
    R.D. Ott et al., “Pulse Thermal Processing (PTP) of Nanocrystalline Silicon Thin-Films,” JOM, 56 (10) (2004), pp. 45–47.Google Scholar
  12. 12.
    J.D.K. Rivard et al., “Advanced Manufacturing Technologies Utilizing High Density Infrared Radiant Heating,” Surf. Eng., 20 (3) (2004), pp. 220–228.CrossRefGoogle Scholar
  13. 13.
    T. Thrum et al., The Development of a Powerful Vortex Stabilized Flash Lamp for RTP Applications, Proceedings from the IEEE International Conference on Plasma Science (2003), p. 451.Google Scholar
  14. 14.
    T. Thrum, A. Hewett, and D. Camm, “Experimental and Theoretical Determination of the Transient Radiation Characteristics of a High Power Water Vortex Stabilized Argon Arc Lamp,” IEEE International Conference on Plasma Science (2001), p. P2F03.Google Scholar
  15. 15.
    S. Jeong, et al., “Magnetic Properties of Nanostructured CoPt and FePt Thin Films,” IEEE. T. Magn., 36(5) (2000), pp. 2336–2238.CrossRefGoogle Scholar
  16. 16.
    Y. Shao, M.L. Yan, and D.J. Sellmyer, “Effects of Rapid Thermal Annealing on Nanostructure, Texture and Magnetic, Properties of Granular FePt: Ag Films for Perpendicular Recording,” J. Appl. Phys., 93 (10) (2003), pp. 8152–8154.CrossRefGoogle Scholar
  17. 17.
    T. Shimatsu et al., “Thermal Fluctuations of Magnetization in Nanocrystalline FePt Thin Films with High Coercivity,” IEEE T. Magn., 35 (5) (1999), pp. 2697–2699.CrossRefGoogle Scholar
  18. 18.
    H. Zeng, et al., “Chemical Ordering of FePt Nanoparticle Self-Assemblies by Rapid Thermal Annealing,” J. Magn. Magn. Mater., 266 (2003), pp. 227–232.CrossRefGoogle Scholar
  19. 19.
    B.D. Cullity, S.R. Stock, and S. Stock, Elements of X-Ray Diffraction, 3rd Edition (Upper Saddle River, NJ: Prentice-Hall, 2001).Google Scholar
  20. 20.
    A. Cole et al., “Pulse Thermal Processing of FePt Thin Films,” manuscript under preparation (2006).Google Scholar
  21. 21.
    B. Yang et al., “Equilibrium Monte Carlo Simulations of A1-L1 Ordering in FePt Nanoparticles,” Scripta Mater., 53 (2005), pp. 417–422.CrossRefGoogle Scholar
  22. 22.
    Y.K. Takahashi and K. Hono, Scripta Mater., 53 (2005), pp. 403–409.CrossRefGoogle Scholar
  23. 23.
    Y.K. Takahashi et al., “Size Dependence of Ordering in FePt Nanoparticles,” J. Appl. Phys. 95 (5) (2004), pp. 1–7.CrossRefGoogle Scholar
  24. 24.
    S.H. Whang, Q. Feng, and Y.Q. Gao, Acta Mater., 46 (18) (1998), pp. 6485–6495.CrossRefGoogle Scholar
  25. 25.
    R.F.C. Farrow et al., “Growth and Temperature Dependence of Long Range Alloy Order and Magnetic Properties of Epitaxial FePt1−x (X−0.5) Films,” Appl. Phys. Lett. 69(8) (1006), pp. 1166–1168.CrossRefGoogle Scholar

Copyright information

© TMS 2006

Authors and Affiliations

  • Amanda Cole
    • 1
  • Gregory B. Thompson
    • 1
  • J. W. Harrell
    • 2
  • J. Weston
    • 3
  • Ronald Ott
    • 4
  1. 1.the Department of Metallurgical and Materials Engineering at the University of Alabama (UA) in Tuscaloosa
  2. 2.UA Department of Physics and AstronomyUSA
  3. 3.UA Center for Materials and Information TechnologyUSA
  4. 4.the Metals and Ceramics Division at Oak Ridge National Laboratory in Oak Ridge

Personalised recommendations