JOM

, Volume 58, Issue 7, pp 52–56 | Cite as

The use of functionally gradient materials in medicine

  • Roger J. Narayan
  • Linn W. Hobbs
  • Chunming Jin
  • Afsaneh Rabiei
Overview Surface Modification in Bioapplications

Abstract

Functionally gradient materials are characterized by uniform changes in composition, crystallinity, and/or grain structure, which may provide unique biological, chemical, or mechanical functionalities in next-generation medical devices. In this article, the development of functionally gradient Zr−Nb alloys, hydroxyapatite coatings, and diamondlike carbon-metal coatings for medical applications is reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Niino, The Iron and Steel Institute of Japan Journal, 30 (1990), pp. 699–703.Google Scholar
  2. 2.
    R.J. Butcher et al., Acta Materialia, 47 (1998), pp. 259–268.CrossRefGoogle Scholar
  3. 3.
    M. Koizumi, Composites B 28 (1–2), pp. 1–4.Google Scholar
  4. 4.
    T.P. Schmalzreid and J.J. Callaghan, Journal of Bone and Joint Surgery, 81 (1999), pp. 115–136.Google Scholar
  5. 5.
    W.H. Harris, Clinical Orthopaedics and Related Research, 274 (1992), pp. 6–11.Google Scholar
  6. 6.
    A. Unsworth et al., Annals of the Rheumatic Diseases, 34 (1975), pp. 277–285.CrossRefGoogle Scholar
  7. 7.
    T.R. Green et al., Journal of Biomedical Materials Research B, 53 (2000), pp. 490–497.CrossRefGoogle Scholar
  8. 8.
    T.P. Schmalzried et al., Journal of Biomedical Materials Research, 38 (1997), pp. 203–210.CrossRefGoogle Scholar
  9. 9.
    P.F. Doorn et al., Journal of Biomedical Materials Research, 42 (1998), pp. 103–110.CrossRefGoogle Scholar
  10. 10.
    S.J. Li et al., Wear, 257 (2004), pp. 869–876.CrossRefGoogle Scholar
  11. 11.
    N. MacKinnon et al., Chemistry and Physics of Lipids, 132 (2004), pp. 23–36.CrossRefGoogle Scholar
  12. 12.
    J.J. Rodriguez-Mercado et al., Toxicology Letters, 144 (2003), pp. 359–369.CrossRefGoogle Scholar
  13. 13.
    E. Ingham and J. Fisher, Proceedings of the Institution of Mechanical Engineers. Part H. Journal of Engineering in Medicine, 214 (2000), pp. 21–37.CrossRefGoogle Scholar
  14. 14.
    C. Scholes and A. Unsworth, Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine, 214 (2000), pp. 49–57.CrossRefGoogle Scholar
  15. 15.
    P. Christel et al., Journal of Biomedical Materials Research, 23 (1989), pp. 45–61.CrossRefGoogle Scholar
  16. 16.
    G. Joshi et al., Journal of Biomechanics, 33 (2000), pp. 1655–1662.CrossRefGoogle Scholar
  17. 17.
    J. Chevalier et al., Biomaterials, 25 (2004), pp. 5539–5545.CrossRefGoogle Scholar
  18. 18.
    L. Gremillard et al., Journal of the European Ceramic Society, 24 (2004), pp. 3483–3489.CrossRefGoogle Scholar
  19. 19.
    T. Sato et al., Advances in Ceramics 12, Science and Technology of Zirconia II, ed. A.H. Heuer et al., (Westerville, OH: American Ceramic Society, 1988).Google Scholar
  20. 20.
    L.W. Hobbs et al., International Journal of Applied Ceramic Technology, 2 (2005), pp. 221–246.CrossRefGoogle Scholar
  21. 21.
    R.S. Laskin, Clinical Orthopaedics and Related Research, 416 (2003), pp. 191–196.CrossRefGoogle Scholar
  22. 22.
    A.M. Patel and M. Spector, Biomaterials, 18 (1997), pp. 441–447.CrossRefGoogle Scholar
  23. 23.
    R.A. Poggie et al., American Society for Testing and Materials Standards, ed. R. Denton and M.K. Keshavan (West Conshohocken, PA: American Society for Testing and Materials, 1992).Google Scholar
  24. 24.
    C.L. Camire et al., Biomaterials, 26 (2005), pp. 2787–2794.CrossRefGoogle Scholar
  25. 25.
    W.L. Suchanek, Biomaterials, 25 (2004), pp. 4647–4657.CrossRefGoogle Scholar
  26. 26.
    G.H. Nancollas and B.E. Tucker, Journal of Oral Implantology, 20 (1994), pp. 221–226.Google Scholar
  27. 27.
    L. Chou et al., Biomaterials, 20 (1999), pp. 977–985.CrossRefGoogle Scholar
  28. 28.
    Y. Yang et al., Journal of Dental Research, 82 (2003) pp. 449–453.CrossRefGoogle Scholar
  29. 29.
    B.H. Zhao et al., Surface and Coatings Technology, 193 (2005), pp. 366–371.CrossRefGoogle Scholar
  30. 30.
    A. Rabiei et al., Materials Science and Engineering C, in press.Google Scholar
  31. 31.
    A. Rabiei et al., MRS Proceedings Volume 845. ed. C. T. laurencin, K. E. Gonsalves, C. Halberstadt, H. A. McNally, (Warrendale, PA: Materials Research Society, 2005).Google Scholar
  32. 32.
    A. Rabiei et al., Surface and Coatings Technology, 200 (2006), pp. 6111–6116.CrossRefGoogle Scholar
  33. 33.
    A. Rabiei et al., Materials Science and Engineering C, in press.Google Scholar
  34. 34.
    A. Rabiei et al., Proceedings of ASME-MSEC 2006, accepted.Google Scholar
  35. 35.
    J. Robertson, Materials Science and Engineering R, 37 (2002), pp. 129–281.CrossRefGoogle Scholar
  36. 36.
    R.J. Narayan, International Materials Reviews, 51 (2006), pp. 1–17.CrossRefGoogle Scholar
  37. 37.
    R.J. Narayan et al., Advanced Engineering Materials, 7 (2005), pp. 1083–1098.CrossRefGoogle Scholar
  38. 38.
    R.J. Narayan et al., Journal of Vacuum Science and Technology B, 23 (2005), pp. 1041–1046.CrossRefGoogle Scholar
  39. 39.
    R.J. Narayan et al., Materials Science and Engineering B, 25 (1994), pp. 5–10.CrossRefGoogle Scholar
  40. 40.
    S.S. Santavirta et al., Clinical Orthopaedics and Related Research, 369 (1999), pp. 92–102.CrossRefGoogle Scholar
  41. 41.
    V.M. Tiainen, Diamond and Related Materials, 10 (2001), pp. 153–160.CrossRefGoogle Scholar
  42. 42.
    G.A.J. Amaratunga et al., Diamond and Related Materials, 4 (1995), pp. 637–640.CrossRefGoogle Scholar
  43. 43.
    O. Amir and R. Kalish, Journal of Applied Physics, 70 (1991), pp. 4958–4962.CrossRefGoogle Scholar
  44. 44.
    C. Donnet et al., Surface and Coatings Technology, 531 (1997), pp. 94–95.Google Scholar
  45. 45.
    A. Grill and V.V. Patel, Diamond and Related Materials, 2 (1993), pp. 1519–1524.CrossRefGoogle Scholar
  46. 46.
    M. Grischke et al., Diamond and Related Materials, 7 (1998), pp. 454–458.CrossRefGoogle Scholar
  47. 47.
    R. Hauert, Diamond and Related Materials, 12 (2003), pp. 583–589.CrossRefGoogle Scholar
  48. 48.
    R.J. Narayan Diamond and Related Materials, 14 (8) (2005), pp. 319–330.CrossRefGoogle Scholar
  49. 49.
    R.B. Thuman and C.P. Gerba, CRC Critical Rev. Environmental Control, 18 (2000), p. 295.Google Scholar
  50. 50.
    M.L. Morrison et al., Diamond and Related Materials, 15 (2006), pp. 138–146.CrossRefGoogle Scholar
  51. 51.
    A. Schroeder et al., Biomaterials, 21 (2000), pp. 449–456.CrossRefGoogle Scholar
  52. 52.
    S. Lopatin et al., Applied Physics Letters, 81 (2002), pp. 2728–2730.CrossRefGoogle Scholar
  53. 53.
    J. Bruley et al., Journal of Microscopy-Oxford, 180, (1995), pp. 22–32.Google Scholar
  54. 54.
    Y. Pauleau and F. Thièry, Surface and Coatings Technology, 180–181 (2004), pp. 313–322.CrossRefGoogle Scholar
  55. 55.
    D. Sheeja et al., Diamond and Related Materials, 12 (2003), pp. 2032–2036.CrossRefGoogle Scholar
  56. 56.
    H. Ruslia et al., Diamond and Related Materials, 10 (2001), pp. 132–138.CrossRefGoogle Scholar
  57. 57.
    A. Voevodin and J.S. Zabinski, Thin Solid Films, 370 (2000), pp. 223–231.CrossRefGoogle Scholar
  58. 58.
    H. Ruslia et al., Thin Solid Films, 355–356 (1999), pp. 174–178.CrossRefGoogle Scholar
  59. 59.
    Strondl et al., Surface and Coatings Technology, 162 (2003), pp. 288–293.CrossRefGoogle Scholar

Copyright information

© Minerals, Metals & Materials Society 2006

Authors and Affiliations

  • Roger J. Narayan
    • 1
  • Linn W. Hobbs
    • 2
  • Chunming Jin
    • 1
  • Afsaneh Rabiei
    • 3
  1. 1.Joint Department of Biomedical EngineeringUniversity of North Carolina and North Carolina State UniversityChapel Hill
  2. 2.Department of Materials Science and Engineering at Massachusetts Institute of Technology in Cambridge
  3. 3.Department of Mechanical and Aerospace Engineering at North Carolina State University in Raleigh

Personalised recommendations