Advertisement

JOM

, Volume 58, Issue 9, pp 32–36 | Cite as

The evolution of wrought age-hardenable superalloys

  • R. F. Decker
Overview Nicke: A Century of Innovation

Abstract

The discovery of y' hardening early in the 20th century seeded a continuous evolution of a remarkable family of alloys, known as the superalloys. The sequence of their development will be traced in this article. The theories of alloying and hardening mechanisms will be discussed as each played an essential role in the progressive development of the superalloys, as did a number of processing discoveries that are reviewed here.

Keywords

Volume Percent White Spot Molten Pool Creep Strength Stress Rupture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert Marsh, U.K. patent 2129 (1906).Google Scholar
  2. 2.
    J. Thompson and N. Beasley, For the Years to Come New York; G.P. Putnam, (1960), pp. 216–321Google Scholar
  3. 3.
    P. Merica, U.S. patent 1,572,744 (filed 26 June 1923).Google Scholar
  4. 4.
    W. Mudge, U.S. patent 1,755,554 (filed 10 June 1924).Google Scholar
  5. 5.
    Heraeus Vacuumschmelze AG, U.K. patent 286,376 (1926).Google Scholar
  6. 6.
    Society Anon. de Commentry, Fourchambert & Decazeville, U.K. patent 371,344 (1929).Google Scholar
  7. 7.
    P. Chevenard, Proces Verbal Soc. Ing. Civils France, 6 (1927), p. 134.Google Scholar
  8. 8.
    N. Pilling and P. Merica, U.S. patents 2,048,163 and 2,048,167 (1929).Google Scholar
  9. 9.
    L. Pfeil, U.K. patent 583, 162 (1940).Google Scholar
  10. 10.
    C. Bieber and W. Sumpter, U.S. patent 2,570,193 (1946).Google Scholar
  11. 11.
    H. Eiselstein, U.S. patent 3,046,108 (1962).Google Scholar
  12. 12.
    W. Fragetta and J. Mihalisin. ASTM Special Tech. Pub. No 339 (1963), p. 69.Google Scholar
  13. 13.
    R. Decker, “Strengthening Mechanisms in Nickel-Base Superalloys” (Presentation at the Steel Strengthening Mechanisms Symposium, Zurich, Switzerland, May 5, 1969).Google Scholar
  14. 14.
    H. Merrick and R. Nicholson, “Deformation of Nickel-Chromium Base Alloys,” Proc. Third Eur. Reg. Conf., Electron Microscopy (A) (Prague, 1964), p. 171; and private communication.Google Scholar
  15. 15.
    D. Baither, V. Mohles, and E. Nembach, J. Mater. Res. 20 (7) (2005), p. 1722.CrossRefGoogle Scholar
  16. 16.
    J. Zrnik et al., Mat. Science & Eng. A, 387-389 (2) (2004), p. 728.CrossRefGoogle Scholar
  17. 17.
    D. Locq et al., Superalloys 2004, ed. K.A. Green et al. Warrendale, PA, TMS, (2004) p. 179.Google Scholar
  18. 18.
    G. Viswanathan et al., in Ref. 17,, p. 173.Google Scholar
  19. 19.
    J. Zhang, et al., in Ref. 17,, p. 189.Google Scholar
  20. 20.
    H. Monajati et al.: Mat. Science & Eng A, 373 (5) (2004), p. 286.CrossRefGoogle Scholar
  21. 21.
    L. Xaio, D. Chen, and M. Chaturvedi, Met. and Mat. Trans., 36A (2005), p. 2671.CrossRefGoogle Scholar
  22. 22.
    R. Decker, J. Rowe, and J. Freeman, Trans. Met. Soc., vol. 218 (New York, AIME, 1960), p. 277.Google Scholar
  23. 23.
    T. Krol, D. Baither, and E. Nembach, Acta Met., 52 (7) (2004), p. 2095.CrossRefGoogle Scholar
  24. 24.
    P. Merica and R. Waltenberg, U.S. National Bureau of Standards Tech. Paper No. 281 (Gaithersburg, MD U.S. National Bureau of Standards, 2 April 1925).Google Scholar
  25. 25.
    C. Bieber and R. Decke. Trans. Met. Soc., vol. 221 New York, AIME, (1961), p. 629.Google Scholar
  26. 26.
    G. Palumbo, E. Lehockey, and P. Lin, JOM, 50 (2) (1998), p. 40.CrossRefGoogle Scholar
  27. 27.
    M. Kurban, U. Erb, and K. Aust, Scripta Materialia, 54 (2006), p. 1053.CrossRefGoogle Scholar
  28. 28.
    P. Wynblatt and Z. Shi, J. Mat. Sci., 40 (2005), p. 2765.CrossRefGoogle Scholar
  29. 29.
    S. Tin et al., Met. and Mat. Trans. A, 36A (2005) p. 2493.CrossRefGoogle Scholar
  30. 30.
    J. Benjamin, U.S. patent 3, 723,092 (27 March 1973).Google Scholar
  31. 31.
    J. Benjamin, Scientific American, 234 (5) (1976).Google Scholar
  32. 32.
    P. Genereux, and C. Borg, Superalloys 2000, ed. K.A. Green et al., (Warrendale, PA, TMS, 2000), p. 19.Google Scholar
  33. 33.
    L. Jackman, G. Maurer, and S. Widge, Advanced Materials & Processes, 143 (5) (1993), p. 19.Google Scholar
  34. 34.
    G. Maurer and A. Patel. Proc. of the 2005 International Symposium on Liquid Metal Processing and Casting, ed. P.D. Lee et al. (Materials Park, OH: ASM International 2005), p. 185.Google Scholar
  35. 35.
    Globalization of Materials R&D (Washington, D.C.: National Academy of Engineering, 1 August 2005).Google Scholar

Copyright information

© Minerals, Metals & Materials Society 2006

Authors and Affiliations

  • R. F. Decker
    • 1
  1. 1.Thixomat, Inc. in Ann Arbor

Personalised recommendations