, Volume 58, Issue 1, pp 17–21 | Cite as

Recent progress in the coating protection of gamma titanium-aluminides

  • C. Leyens
  • R. Braun
  • M. Fröhlich
  • P. Eh. Hovsepian
Research Summary High-Temperature Protection


Engine designers show continued interest in titanium aluminides based on the intermetallic γ-TiAl phase as lightweight structural materials to be used at moderately elevated temperatures. Although alloy development has made significant progress in terms of mechanical properties and environmental resistance, protective coatings have been developed that help to extend the lifetime of these alloys significantly. The major challenge of coating development is long-termstability of aprotective oxide scale that forms during service for which purpose alumina formation is essential. Furthermore, changes of coating chemistries at high temperatures must be controlled to avoid rapid degradation of the coatings due to diffusional losses into the substrate material and vice versa.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Gilchrist and T.M. Pollock. Struct. Intermetallics 2001, ed. K.J. Hemker et al. (Warrendale, PA: TMS, 2001), pp. 3–12.Google Scholar
  2. 2.
    W. Smarlsy et al., Struct. Intermetallics 2001, in Ref. 1, pp. 25–34.Google Scholar
  3. 3.
    N.A. Walker and N.E. Glover, Struct. Intermetallics 2001. in Ref. 1, pp. 19–24.Google Scholar
  4. 4.
    W.D. Münz, D. Schulze, and F.J.M. Hauzer, Surf. Coat. Tech., 50 (1992), p. 169.CrossRefGoogle Scholar
  5. 5.
    G. Håkansson et al., Surf. Coat. Tech. 48 (1991), p. 51.CrossRefGoogle Scholar
  6. 6.
    I. Petrov et al., Thin Solid Films, 302 (1997), p. 179.CrossRefGoogle Scholar
  7. 7.
    C. Leyens et al., Surf. Coat. Tech., 155(2–3) (2003), pp. 103–111.Google Scholar
  8. 8.
    M.I. Lembke et al., Surf. Eng., 17 (2) (2001), pp. 153–158.CrossRefGoogle Scholar
  9. 9.
    C. Leyens, M. Peters, and W.A. Kaysser, Adv. Eng. Mat., 2 (5) (2000), pp. 265–269.CrossRefGoogle Scholar
  10. 10.
    C. Leyens et al., Surf. Coat. Tech., 108–109, (1998), pp. 30–35.CrossRefGoogle Scholar
  11. 11.
    M.P. Brady et al., JOM, 48 (11) (1996), pp. 46–50.Google Scholar
  12. 12.
    C. Leyens et al. Gamma Titanium Aluminides 2003, ed. Y.-W. Kim, H. Clemens, and A.H. Rosenberger (Warrendale, PA: TMS, 2003), pp. 551–557.Google Scholar
  13. 13.
    C. Leyens, R. Braun, and M. Peters, 10th World Conference on Titanium (Hamburg, Germany: Wiley-VCH, 2003).Google Scholar
  14. 14.
    C. Leyens and R. Braun, Mater. Sci. Forum. 461–464 (2004), pp. 223–230.CrossRefGoogle Scholar
  15. 15.
    C. Leyens et al., Materials for Advanced Power Engineering, ed. J. Lecomte-Beckers et al. (Juelich, Germany: Schriften des Forschungszentrum, Reihe Energietechnik, 2002), pp. 465–474.Google Scholar
  16. 16.
    T.N. Rhys-Jones and F.C. Toriz, High Temp. Technol., 7 (2) (1989) pp. 73–81.Google Scholar
  17. 17.
    R.A. Miller, “Thermal Barrier Coatings for Aircraft Engines-History and Directions,” in NASA CP 3312 (1995), pp. 17–34.Google Scholar
  18. 18.
    M.F. Trubelia et al., Advanced Turbine Systems Annual Program Review Meeting 1997 Conference Proceedings (Washington, D.C.: U.S. Department of Energy).Google Scholar
  19. 19.
    D.V. Rigney et al., J. Therm. Spray Tech., 6 (2) (1997) pp. 167–175.CrossRefGoogle Scholar
  20. 20.
    C. Leyens et al., Zeitschrift fur Metallkunde 92 (7) (2001) pp. 762–772.Google Scholar
  21. 21.
    M. Peters et al., Adv. Eng. Mater. 3 (4) (2001) pp. 193–204.CrossRefGoogle Scholar

Copyright information

© Minerals, Metals & Materials Society 2006

Authors and Affiliations

  • C. Leyens
    • 1
  • R. Braun
    • 1
  • M. Fröhlich
    • 1
  • P. Eh. Hovsepian
    • 2
  1. 1.the Technical University of Brandenburg at CottbusGermany
  2. 2.the Institute of Materials Research at the German Aerospace Center (DLR)CologneGermany

Personalised recommendations