JOM

, Volume 58, Issue 2, pp 26–32

Metal hydrides for vehicular applications: The state of the art

  • Dhanesh Chandra
  • James J. Reilly
  • Raja Chellappa
Metal Hydrides Feature

Abstract

Recent developments in light metal complex hydrides show that there is a potential for hydrogen storage using these hydrides in fuel cells for on-board vehicular and other applications. The search for new alloys promises to have practical significance with the realization that hydrogen as a fuel holds the key to filling energy needs and solving environmental problems. This review presents the U.S. Department of Energy FreedomCAR goals for hydrogen storage, storage capacities of important hydrides, and current developments in light-metal complex hydrides.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    www.eia.doe.gov/oiaf/1605/ggccebro/chapter1.html.Google Scholar
  2. 2.
    L. Schlapbach and A. Züttel, Nature, 414 (2001), p. 353.CrossRefGoogle Scholar
  3. 3.
    A. Züttel, Mater. Today, (2003), p. 24.Google Scholar
  4. 4.
    B. Johnston, M.C. Mayo, and A. Khare, Technovation, 25 (2005), p. 569.CrossRefGoogle Scholar
  5. 5.
    ww.gm.com/company/gmability/adv_tech/images/fact_sheets/hydrogen3.pdf.Google Scholar
  6. 6.
    www.bmwworld.com/hydrogen.Google Scholar
  7. 7.
    www.daimlerchrysler.com/dccom (search: hydrogen).Google Scholar
  8. 8.
    http://world.honda.com/FuelCell.Google Scholar
  9. 9.
    www.toyota.co.jp/en/tech/environment/fchv.Google Scholar
  10. 10.
    www.h2cars.biz.Google Scholar
  11. 11.
    H. Buchener and R. Povel, Int. J. Hydrogen Energy, 7 (1982), p. 259.CrossRefGoogle Scholar
  12. 12.
    www.eere.energy.gov/vehiclesandfuels/about/partnership s/freedomcar/index.shtml.Google Scholar
  13. 13.
    G. Thomas (Presentation at the IPHE International Hydrogen Storage Conference, Lucca, Italy, 19–22 June 2005).Google Scholar
  14. 14.
    Y. Fukal, The Metal-Hydrogen System—Basic Bulk Properties (Berlin: Springer-Verlag, 1993).Google Scholar
  15. 15.
    L. Schlapbach, editor, Topics in Appl, Phys. Vol. 63: Hydrogen in Intemetallic Compounds I (Berlin: Springer, 1988).Google Scholar
  16. 16.
    R. Bowman, J. Alloys Compd., 356–357 (2003), p. 789.CrossRefGoogle Scholar
  17. 17.
    www.panasonic.com/industrial/battery/oem/chem/nicmet.Google Scholar
  18. 18.
    M. Coleman et al., “Zirconium Iron Disproportionation during Hydriding Reactions in Nuclear Gettering Operation”, Adv. Mater. Energy Conv. II ed. D. Chandra, R.G. Bautista, and L. Schlapbach (Warrendale, PA, TMS, 2004), pp. 429–435.Google Scholar
  19. 19.
    F.E. Lynch, J. Less-Common Metals, 174 (1–2) (1991), pp. 943–958.CrossRefGoogle Scholar
  20. 20.
    W.M. Mueller, J.P. Blackledge, and G.G. Libowitz, Metal Hydrides (New York: Academic, 1968).Google Scholar
  21. 21.
    L. Schlapbach, Topics in Appl. Phys., Vol. 63: Hydrogen in Intermetallic Compounds I: Electronic, Thermodynamics, and Crystallographic Properties, Preparation (Berlin: Springer Verlag 1988).Google Scholar
  22. 22.
    G. Sandrock, J. Alloys Compd., 293–295 (1999), p. 877.CrossRefGoogle Scholar
  23. 23.
    K. Yvon, Chimia, 52 (10) (1998), p. 613.Google Scholar
  24. 24.
    DOE Hydrogen Program Annual Report (Washington, D.C.: U.S. DOE, 2004), pp. 195–214.Google Scholar
  25. 25.
    B. Bogdanovic and M. Schwickardi, J. Alloys Comp., 253-254 (1997), p. 1.CrossRefGoogle Scholar
  26. 26.
    G. Sandrock et al., Appl. Phys. A, 80, (2005), pp. 687–690.CrossRefGoogle Scholar
  27. 27.
    G. Sandrock and G. Thomas, Appl. Phys. A. 72, (2001), p. 153.CrossRefGoogle Scholar
  28. 28.
    W. Luo and E. Ronnebro, J. Alloys Compd., 404–406 (2005), p. 392.CrossRefGoogle Scholar
  29. 29.
    S.W. Lambert et al., J. Alloys Compd., 187 (1) (1992), p. 113.CrossRefGoogle Scholar
  30. 30.
    D. Chandra et al., J. Alloys Compd., 199 (1–2) (1993), pp. 93–100.CrossRefGoogle Scholar
  31. 31.
    A. Percheron-Guegan, C. Lartigue, and J.C. Archard, J. Less-Common Metals, 109 (1985), p. 287.CrossRefGoogle Scholar
  32. 32.
    A. Sharma, “Effect of Thermal Cycling and Cold-Work on V0.995 C0.005 Hydrides” (M.S. Thesis, University of Nevada, Reno, NV, 1992).Google Scholar
  33. 33.
    Y. Nakamura, R.C. Bowman Jr., and E. Akiba, J. Alloys Compd., 373 (2004), p. 183.Google Scholar
  34. 34.
    B. Bogdanovic et al., J. Alloys Compd., 302 (2000), p. 36.CrossRefGoogle Scholar
  35. 35.
    G.J. Thomas et al., J. Alloys Compd., (330–332) (2002), p. 702.CrossRefGoogle Scholar
  36. 36.
    C.M. Jensen et al., Int. J. Hydrogen Energy, 24 (1999), p. 461.CrossRefGoogle Scholar
  37. 37.
    K.J. Gross, G. Sandrock, and G.J. Thomas, J. Alloys Compd., 330–332 (2002), p. 691.CrossRefGoogle Scholar
  38. 38.
    K.J. Gross, G.J. Thomas, and C.M. Jensen, J. Alloys Compd., 330–332 (2002), p. 683.CrossRefGoogle Scholar
  39. 39.
    G. Sandrock, K. Gross, and G. Thomas, J. Alloys Compd., 339 (2002), p. 299.CrossRefGoogle Scholar
  40. 40.
    V.P. Balema and L. Balema, Phys. Chem. Chem. Phys., 7 (2005), p. 1310.CrossRefGoogle Scholar
  41. 41.
    R.T. Walters and J.H. Scogin, J. Alloys Compd., 379 (2004), p. 135.CrossRefGoogle Scholar
  42. 42.
    H.W. Brinks et al., J. Alloys Compd., 376 (2004), p. 215.CrossRefGoogle Scholar
  43. 43.
    R.A. Zidan et al., J. Alloys Compd., 285 (1999), p. 119.CrossRefGoogle Scholar
  44. 44.
    A. Zaluska, L. Zaluski, and J.O. Ström-Olsen, J. Alloys Compd., 290 (1999), p. 71.CrossRefGoogle Scholar
  45. 45.
    A. Zaluska, L. Zaluski, and J.O. Ström-Olsen, J. Alloys Compd., 298 (2000), p. 125.CrossRefGoogle Scholar
  46. 46.
    B. Bogdanovic et al., J. Alloys Compd., 350 (2003), p. 246.CrossRefGoogle Scholar
  47. 47.
    W. Grochala and P.P. Edwards, Chem. Rev., 104 (2004), p. 1283.CrossRefGoogle Scholar
  48. 48.
    H.W. Brinks et al., J. Alloys Compd., 351 (2003), p. 222.CrossRefGoogle Scholar
  49. 49.
    J. Chen et al., J. Phys. Chem. B, 105 (2001), p. 11214.CrossRefGoogle Scholar
  50. 50.
    D. Blanchard et al., Mater. Sci. Eng. B, 108 (2004), p. 54.CrossRefGoogle Scholar
  51. 51.
    M. Resan et al., Int. J. Hydrogen Energy, 30 (2005), p. 1417.CrossRefGoogle Scholar
  52. 52.
    A. Andreasen, T. Vegge, A.S. Pedersen, J. Solid State Chemistry, 178 (2005), pp. 3672.CrossRefGoogle Scholar
  53. 53.
    G. Sandrock et al., J. Alloys Compd., 330–332 (2002), p. 696.CrossRefGoogle Scholar
  54. 54.
    M. Fichtner, O. Fuhr, and O. Kircher, J. Alloys Compd., 356–357 (2003), p. 418.CrossRefGoogle Scholar
  55. 55.
    H. Morioka et al., J. Alloys Compd., 353 (2003), p. 310.CrossRefGoogle Scholar
  56. 56.
    J. Graetz et al., Phys. Rev. B, 71 (2005), p. 184115.CrossRefGoogle Scholar
  57. 57.
    P. Chen et al., Nature, 420 (21) (2002), p. 302; J. Phys. Chem. B. 107 (2003), p. 10967.CrossRefGoogle Scholar
  58. 58.
    K. Ohoyama et al., J. Phys. Soc. Japan, 74 (2005), p. 483.CrossRefGoogle Scholar
  59. 59.
    E. Fakioglu, Y. Yurum, and T.N. Veziroglu, Int. J. Hydrogen Energy, 29 (2004), p. 1371.CrossRefGoogle Scholar
  60. 60.
    C. Read, G. Ordaz, and S. Satyapal, WE-Heraeus Seminar on Hydrogen Storage with Novel Nanomaterials (23–27 October 2005), http://www.h-workshop.uni-konstanz.de/.Google Scholar
  61. 61.
    R. Zidan, D.K. Slattery, and J. Burns, Int. J. Hydrogen Energy, 16 (1991), p. 821.CrossRefGoogle Scholar
  62. 62.
    Y. Chen et al., Int. J. Hydrogen Energy, in press.Google Scholar
  63. 63.
    C.X. Shang et al., Int. J. Hydrogen Energy, 29 (2004), p. 73.CrossRefGoogle Scholar
  64. 64.
    R.A. Varin et al., J. Alloys Compd. 373 (2004), p. 270.Google Scholar
  65. 65.
    A. E. Finholt, A. C. Bond, and H. I. Schlesinger, J. Am. Chem., 69 (1947), p. 1199.CrossRefGoogle Scholar
  66. 66.
    F.M. Brower et al., J. Am. Chem. Soc., 98 (1976), p. 2450.CrossRefGoogle Scholar
  67. 67.
    J.W. Turley and H.W. Rinn, Inorg. Chem., 8 (1969), p. 18.CrossRefGoogle Scholar
  68. 68.
    G. Sandrock et al., J. Alloys. Comp., (2005), in press.Google Scholar
  69. 69.
    J. Graetz and J.J. Reilly, J. Phys. B, 109 (2005), pp. 22181–22185.Google Scholar
  70. 70.
    J. Graetz and J. Reilly, J. Alloys and Comp., in press (2005).Google Scholar
  71. 71.
    G.C. Sienke et al., J. Chem. Phys., 47 (1967), p. 2759.CrossRefGoogle Scholar

Copyright information

© Minerals, Metals & Materials Society 2006

Authors and Affiliations

  • Dhanesh Chandra
    • 1
  • James J. Reilly
    • 2
  • Raja Chellappa
    • 1
  1. 1.Department of Chemical and Metallurgical Engineering at the University of Nevada in Reno
  2. 2.Department of Energy Science and Technology at Brookhaven National Laboratory in Upton

Personalised recommendations