, Volume 57, Issue 2, pp 60–66 | Cite as

Finding inspiration in argiope trifasciata spider silk fibers

  • Manuel Elices
  • Gustavo V. Guinea
  • José Pérez-Rigueiro
  • Gustavo R. Plaza
Overview High-Performance Fibers


The outstanding mechanical properties of silk fibers from the spider Argiope trifasciata are reviewed in this article, particularly the tensile behavior under controlled humidity and temperature. Samples obtained by forced silking showed a remarkable reproducibility. A novel procedure, wet stretching, developed by the authors, promises to shed light on the spinning of artificial silk fibers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.L. Kaplan et al., “Silks,” Biomaterials. Novel Materials from Biological Sources, ed. D. Byrom (New York: Stockton Press, 1991), pp. 1–53.Google Scholar
  2. 2.
    J.M. Gosline et al., “The Mechanical Design of Spider Silks: From Fibroin Sequence to Mechanical Function,” J. Exp. Biol., 202 (1999), pp. 3295–3303.Google Scholar
  3. 3.
    C. Viney, “Silk Fibres: Origins, Nature and Consequences of Structure,” Structural Biological Materials, ed. M. Elices (Amsterdam: Pergamon Press, 2000), pp. 293–333.Google Scholar
  4. 4.
    F. Vollrath, “Strength and Structure of Spiders’ Silks,” Rev. Mol. Biotech., 74 (2000), pp. 67–83.CrossRefGoogle Scholar
  5. 5.
    M.B. Hinman, J.A. Jones, and R.V. Lewis, “Synthetic Spider Silk: A Modular Fiber,” TIBTECH, 18 (2000), pp. 374–379.Google Scholar
  6. 6.
    F. Vollrath and D.P. Knight, “Liquid Crystalline Spinning of Spider Silk,” Nature, 410 (2001), pp. 541–548.CrossRefGoogle Scholar
  7. 7.
    A. Lazaris et al., “Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells,” Science, 295 (2002), pp. 472–476.CrossRefGoogle Scholar
  8. 8.
    H.-J. Jin and D.L. Kaplan, “Mechanisms of Silk Processing in Insects and Spiders,” Nature, 424 (2003), pp. 1057–1061.CrossRefGoogle Scholar
  9. 9.
    M.W. Denny, “The Physical Properties of Spider’s Silk and Their Role in the Design of Orb-Webs,” J. Exp. Biol., 65 (1976), pp. 483–506.Google Scholar
  10. 10.
    A.H. Simmons, C.A. Michal, and L.W. Jelinski, “Molecular Orientation and Two-Component Nature of the Crystalline Fraction of Spider Dragline Silk,” Science, 272 (1996), pp. 84–87.CrossRefGoogle Scholar
  11. 11.
    J.M. Gosline, M. Denny, and M.E. DeMont, “Spider Silk as Rubber,” Nature, 309 (1984), pp. 551–552.CrossRefGoogle Scholar
  12. 12.
    Y. Termonia, “Molecular Modelling of the Stress/Strain Behavior of Spider Dragline,” Structural Biological Materials, ed. M. Elices (Amsterdam: Pergamon Press, 2000), pp. 337–349.Google Scholar
  13. 13.
    J. Pérez-Rigueiro et al., “Tensile Properties of Argiope trifasciata Drag Line Silk Obtained from the Spider’s Web,” J. Appl. Polym. Sci., 82 (2001), pp. 2245–2251.CrossRefGoogle Scholar
  14. 14.
    M.A. Garrido et al., “Active Control of Spider Silk Strength: Comparison of Drag Line Spun on Vertical and Horizontal Surfaces,” Polymer, 43 (2002), pp. 1537–1540.CrossRefGoogle Scholar
  15. 15.
    B. Madsen, Z.Z. Shao, and F. Vollrath, “Variability in the Mechanical Properties of Spider Silks on Three Levels: Interspecific, Intraspecific and Intraindividual,” Int. J. Biol. Macromol., 24 (1999), pp. 301–306.CrossRefGoogle Scholar
  16. 16.
    G.V. Guinea et al., “Reproducibility of the Tensile Properties of Spider (Argiope trifasciata) Silk Obtained by Forced Silking.” J. Exp. Zool., 303A (2004), pp. 37–44.CrossRefGoogle Scholar
  17. 17.
    R.W. Work and P.D. Emerson, “An Apparatus and Technique for the Forcible Silking of Spiders,” J. Arachnol., 10 (1982), pp. 1–10.Google Scholar
  18. 18.
    J. Pérez-Rigueiro et al., “Silkworm Silk as an Engineering Material,” J. Appl. Polym. Sci., 70 (1998), pp. 2439–2447.CrossRefGoogle Scholar
  19. 19.
    J. Pérez-Rigueiro et al., “Mechanical Properties of Silkworm Silk in Liquid Media,” Polymer, 41 (2000), pp. 8433–8439.CrossRefGoogle Scholar
  20. 20.
    G.V. Guinea et al., “Self-tightening of Spider Silk Fibers Induced by Moisture,” Polymer, 44 (2003), pp. 5785–5788.CrossRefGoogle Scholar
  21. 21.
    G.R. Plaza, “Thermo-hygro-mechanical Behaviour of Spider Silk Fibers [Ph.D. Thesis (in Spanish) Universidad Politécnica de Madrid, 2004].Google Scholar
  22. 22.
    R.F. Foelix, Biology of Spiders (Oxford, U.K.: Oxford University Press, 1996).Google Scholar
  23. 23.
    J.M. Gosline et al., “Elastomeric Network Models for the Frame and Viscid Silks from the Orb Web of the Spider Araneus diadematus,” Amer. Chem Soc. Symp. Series 544 (1994), pp. 328–341.Google Scholar
  24. 24.
    R.W. Work, “Dimensions, Birefringences, and Force-Elongation Behavior of Major and Minor Ampullate Silk Fibers from Orb-Web-Spinning Spiders. The Effects of Wetting on These Properties,” Textile Res. J., 47 (1977), pp. 650–662.Google Scholar
  25. 25.
    J. Pérez-Rigueiro, M. Elices, and G.V. Guinea, “Supercontraction Tailors the Tensile Properties of Spider Silk,” Polymer, 44 (2003), pp. 3733–3736.CrossRefGoogle Scholar
  26. 26.
    G.V. Guinea et al., “Stretching of Supercontracted Fibers: A Link between Spinning and the Variability of Spider Silk,” J. Exp. Biol., 208 (2005), pp. 25–30.CrossRefGoogle Scholar
  27. 27.
    M. Elices et al., “Recovery in Spider Silk Fibers,” J. Appl. Pol. Sci., 92 (2004), pp. 3537–3541.CrossRefGoogle Scholar
  28. 28.
    B. Madsen and F. Vollrath, “Mechanics and Morphology of Silk Drawn from Anesthetized Spiders,” Naturwissenschaften, 87, (2000) pp. 148–153.CrossRefGoogle Scholar

Copyright information

© TMS 2005

Authors and Affiliations

  • Manuel Elices
    • 1
  • Gustavo V. Guinea
    • 1
    • 2
  • José Pérez-Rigueiro
    • 1
  • Gustavo R. Plaza
    • 1
  1. 1.the Materials Science Departmentthe Universidad Politécnica de MadridSpain
  2. 2.the Spanish Structural Integrity SocietySpain

Personalised recommendations