Advertisement

JOM

, Volume 57, Issue 12, pp 60–64 | Cite as

The bonding of nanowire assemblies using adhesive and solder

  • Zhiyong Gu
  • Hongke Ye
  • David H. Gracias
  • David Gracias
Research Summary Surface Engineering

Abstract

In the past decade, several strategies have been proposed to direct the assembly of nanocomponents from the bottom up to fabricate two- and three-dimensional integrated structures. In these strategies, either the surface or the bulk of a nanocomponent is functionalized to facilitate positive and negative interactions based on molecular, electrostatic, magnetic, or capillary forces, to enable the components to interact with one another in a fluidic medium and form thermodynamically stable structures. However, in many cases, the assembled structures are not well bonded. This paper summarizes results on directing the assembly of metallic rod-shaped (30–200 nm diameter) components with one another and with substrates to form structures that can be bonded by adhesive or solder. The methodology can be adapted with other self-assembling strategies to form mechanically stable, and in certain instances electrically conductive, assemblies composed of nanoscale componenents.

Keywords

Solder Joint Integrate Structure Directed Assembly Nanoporous Membrane Mild Sonication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.I. Stupp et al., Science, 276 (1997), pp. 384–389.CrossRefGoogle Scholar
  2. 2.
    D.H. Gracias et al., Science, 289 (2000), pp. 1170–1172.CrossRefGoogle Scholar
  3. 3.
    Y. Huang et al., Science, 291 (2001), pp. 630–633.CrossRefGoogle Scholar
  4. 4.
    D.H. Gracias et al., Adv. Mater., 14 (2002), pp. 235–238.CrossRefGoogle Scholar
  5. 5.
    H.O. Jacobs et al., Science, 296 (2002), pp. 323–325.CrossRefGoogle Scholar
  6. 6.
    N.I. Kovtyukhova and T.E. Mallouk, Chem.—A European J., 8 (2002), pp. 4354–4363.CrossRefGoogle Scholar
  7. 7.
    J.M. Lehn, Science, 295 (2002), pp. 2400–2403.CrossRefGoogle Scholar
  8. 8.
    G.M. Whitesides and B. Grzybowski, Science, 295 (2002), pp. 2418–2421.CrossRefGoogle Scholar
  9. 9.
    H. Fan et al., Science, 304 (2004), 567–571.CrossRefGoogle Scholar
  10. 10.
    Y. Lin et al., Nature, 434 (2005), pp. 55–59.CrossRefGoogle Scholar
  11. 11.
    J.M. Gibson and J. Murray, Phys. Today, 50 (1997), pp. 56–61.Google Scholar
  12. 12.
    J.A. Stroscio and D.M. Eigler, Science, 254 (1991), pp. 1319–1326.CrossRefGoogle Scholar
  13. 13.
    Z.F. Ren et al., Science, 282 (1998), pp. 1105–1107.CrossRefGoogle Scholar
  14. 14.
    Y. Wu et al., Nature, 430 (2004), pp. 61–65.CrossRefGoogle Scholar
  15. 15.
    C.R. Martin, Science, 266 (1994), pp. 1961–1966.CrossRefGoogle Scholar
  16. 16.
    C.R. Martin, Chem. Mater., 8 (1996), pp. 1739–1746.CrossRefGoogle Scholar
  17. 17.
    B.R. Martin et al., Adv. Mater., 11 (1999), pp. 1021–1025.CrossRefGoogle Scholar
  18. 18.
    C.J. Murphy, Science, 298 (2002), pp. 2139–2141.CrossRefGoogle Scholar
  19. 19.
    Y. Sun and Y. Xia, Science, 298 (2002), pp. 2176–2179.CrossRefGoogle Scholar
  20. 20.
    C.A. Mirkin, Inorg. Chem., 39 (2000), pp. 2258–2272.CrossRefGoogle Scholar
  21. 21.
    H. Mattoussi et al., J. Am. Chem. Soc., 122 (2000), pp. 12142–12150.CrossRefGoogle Scholar
  22. 22.
    J.K.N. Mbindyo et al., Adv. Mater., 13 (2001), pp. 249–251.CrossRefGoogle Scholar
  23. 23.
    A.K. Salem et al., Adv. Mater., 16 (2004), pp. 268–271.CrossRefGoogle Scholar
  24. 24.
    H.O. Jacobs, S.A. Campbell, and M.G. Steward, Adv. Mater., 14 (2002), pp. 1553–1557.CrossRefGoogle Scholar
  25. 25.
    B.A. Grzybowski et al., Nature Mater., 2 (2003), pp. 241–245.CrossRefGoogle Scholar
  26. 26.
    K.D. Hermanson et al., Science, 294 (2001), pp. 1082–1086.CrossRefGoogle Scholar
  27. 27.
    S. Evoy et al., Microelectronic Eng., 75 (2004), pp. 31–42.CrossRefGoogle Scholar
  28. 28.
    L. Bauer et al., Nano Lett., 1 (2001), pp. 155–158.CrossRefGoogle Scholar
  29. 29.
    C.J. Love et al., J. Am. Chem. Soc., 125 (2003), pp. 12696–12697.CrossRefGoogle Scholar
  30. 30.
    C.M. Hangarter and N.V. Myung, Chem. Mater., 17 (2005), pp. 1320–3124.CrossRefGoogle Scholar
  31. 31.
    T.D. Clark et al., J. Am. Chem. Soc., 123 (2001), pp. 7677–7682.CrossRefGoogle Scholar
  32. 32.
    R.R.A. Syms et al., J. Microelectromechan. Sys., 12 (2003), pp. 387–417.CrossRefGoogle Scholar
  33. 33.
    Y. Lin et al., Science, 299 (2003), pp. 226–229.CrossRefGoogle Scholar
  34. 34.
    S. Park et al., Science, 303 (2004), pp. 348–351.CrossRefGoogle Scholar
  35. 35.
    A. Ulman, Chem. Rev., 96 (1996), pp. 1533–1554.CrossRefGoogle Scholar
  36. 36.
    P.F. Nealey et al., Mol. Electron. (1997), pp. 343–367.Google Scholar
  37. 37.
    S. Park, S.W. Chung, and C.A. Mirkin, J. Am. Chem. Soc., 126 (2004), pp. 11772–11773.CrossRefGoogle Scholar
  38. 38.
    N.I. Kovtyukhova, B.K. Kelley, and T.E. Mallouk, J. Am. Chem. Soc., 126 (2004), pp. 12738–12739.CrossRefGoogle Scholar
  39. 39.
    Z. Gu, Y. Chen, and D.H. Gracias, Langmuir, 20 (2004), pp. 11308–11311.CrossRefGoogle Scholar
  40. 40.
    Z. Gu et al., “Reflow and Electrical Characteristics of Nanoscale Solder,” Small (2005), In press.Google Scholar
  41. 41.
    H. Ye et al., “Integrating Nanowires with Substrates Using Directed Assembly and Nanoscale Soldering,” IEEE Trans. Nanotech. (2005), In press.Google Scholar

Copyright information

© Minerals, Metals & Materials Society 2005

Authors and Affiliations

  • Zhiyong Gu
    • 1
  • Hongke Ye
    • 1
  • David H. Gracias
    • 1
  • David Gracias
    • 2
  1. 1.the Department of Chemical and Biomolecular Engineering at Johns Hopkins UniversityBaltimore
  2. 2.the Department of Chemistry at Johns Hopkins UniversityUSA

Personalised recommendations