Advertisement

JOM

, Volume 57, Issue 9, pp 32–39 | Cite as

Predicting phase equilibrium, phase transformation, and microstructure evolution in titanium alloys

  • Y. -Z. Wang
  • N. Ma
  • Q. Chen
  • F. Zhang
  • S. L. Chen
  • Y. A. Chang
Overview Phase Transformations

Abstract

Phase transformation and microstructural evolution in commercial titanium alloys are extremely complex. Traditional models that characterize microstructural features by average values without capturing the anisotropy and spatially varying aspects may not be sufficient to quantitatively define the microstructure and hence to allow for establishing a robust microstructure-property relationship. This article discusses recent efforts in integrating thermodynamic modeling and phase-field simulation to develop computational tools for quantitative prediction of phase equilibrium and spatiotemporal evolution of microstructures during thermal processing that account explicitly for precipitate morphology, spatial arrangement, and anisotropy. The rendering of the predictive capabilities of the phase-field models as fast-acting design tools through the development of constitutive equations is also demonstrated.

Keywords

Gibbs Free Energy Titanium Alloy Microstructural Evolution Growth Kinetic Texture Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Tiley et al., Mat. Sci. Eng. A-Struct., 372 (1–2) (2004), p. 191.CrossRefGoogle Scholar
  2. 2.
    S.L. Semiatin, N. Stefansson, and R.D. Doherty, Metall. Mater. Trans. A, 36A (5) (2005), p. 1372–1376.CrossRefGoogle Scholar
  3. 3.
    J.D. Miller and S.L. Semiatin, Metall. Mater. Trans. A, 36A (1) (2005), p. 259.CrossRefGoogle Scholar
  4. 4.
    S.L. Semiatin et al., Metall. Mater. Trans. A, 34A (10) (2003), pp. 2377–2386.CrossRefGoogle Scholar
  5. 5.
    B. Appolaire, L. Heriche, and E. Aeby-Gautier, Acta Mater, 53 (2005), p. 3001.CrossRefGoogle Scholar
  6. 6.
    S. Malinov et al., Metall. Mater. Trans. A, 23A (2001), p. 879.CrossRefGoogle Scholar
  7. 7.
    I. Katzarov, S. Malinov, and W. Sha, Metall. Mater. Trans. A (33A) (2002), p. 1027.Google Scholar
  8. 8.
    L.Q. Chen, Annu. Rev. Mater. Res., 32 (2002), p. 113.CrossRefGoogle Scholar
  9. 9.
    Y. Wang, L.Q. Chen, and A.G. Khachaturyan, Computer Simulation in Materials Science Nano/Meso/Macroscopic Space and Time Scales, ed. H.O. Kirchner, K.P. Kubin, and V. Pontikis (Dordrecht, the Netherlands: Kluwer Academic Publishers, 1996), pp. 325–371.Google Scholar
  10. 10.
    Y. Wang and L.Q. Chen, “Simulation of Microstructural Evolution Using the Field Method,” Methods in Material Research (New York: John Wiley & Sons, Inc., 2000), pp. 2a.3.1–2a.3.23.Google Scholar
  11. 11.
    A. Karma, “Phase Field Methods,” Encyclopedia of Materials: Science and Technology (Oxford, U.K.: Elsevier, 2001), pp. 6873–6886.Google Scholar
  12. 12.
    Q. Chen et al., Scripta Mater., 50 (2004), pp. 471–476.CrossRefGoogle Scholar
  13. 13.
    C. Shen et al., Materials Design Approaches and Experiences, ed. J.-C. Zhao, M. Fahrmann, and T.M. Pollock (Warrendale, PA: TMS, 2001), pp. 57–74.Google Scholar
  14. 14.
    C. Shen et al., Scripta Mater., 50 (7) (2004), p. 1023.CrossRefGoogle Scholar
  15. 15.
    C. Shen et al., Scripta Mater., 50 (7) (2004), p. 1029.CrossRefGoogle Scholar
  16. 16.
    A. Karma and W.J. Rappel, Phys. Rev. E. 53 (1996), p. 3017.CrossRefGoogle Scholar
  17. 17.
    A. Karma and W.J. Rappel, Phys. Rev. E, 57 (1998), p. 4323.CrossRefGoogle Scholar
  18. 18.
    K.R. Elder et al., Phys. Rev. E, 64 (2001), p. 021604.CrossRefGoogle Scholar
  19. 19.
    S.L. Chen et al., JOM. 55 (12) (2003), pp. 48–51.CrossRefGoogle Scholar
  20. 20.
    F.Y. Xie, Pan Titanium User Manual. Version 1 (Madison, WI: Compu Therm LLC. 2004).Google Scholar
  21. 21.
    Q. Chen and Y. Wang, in preparation (data available upon request).Google Scholar
  22. 22.
    L. Kaufman, Computer Calculation of Phase Diagrams (New York: Academic Press, 1970).Google Scholar
  23. 23.
    Y.A. Chang et al., Progress in Materials Science, 49 (2004), pp. 313–345.CrossRefGoogle Scholar
  24. 24.
    U.R. Kattner, JOM, 49 (12) (1997), pp. 14–19.CrossRefGoogle Scholar
  25. 25.
    Y.M. Muggianu, M. Gambino, and L.P. Bros, J. Chim. Phus., 72 (1975), pp. 85–88.Google Scholar
  26. 26.
    H. Liang and Y.A. Chang, Light Metals 1999, ed. C.E. Eckert (Warrendale, PA: TMS, 1999), pp. 875–881.Google Scholar
  27. 27.
    J.W. Cahn and J.E. Hilliard, J. Chem. Phys., 28 (1958), p. 258.CrossRefGoogle Scholar
  28. 28.
    J.D. Gunton, M.S. Miguel, and P.S. Sahni, “The Dynamics of First-Order Phase Transitions,” Phase Transitions and Critical Phenomena, Vol. 8, ed. C. Domb and J.L. Lebowitz (New York: Academic Press, 1983).Google Scholar
  29. 29.
    A.A. Wheeler, G.B. McFadden, and W.J. Boettinger, Proc. R. Soc. London Ser. A, 452 (1996), p. 495.CrossRefGoogle Scholar
  30. 30.
    S.M. Allen and J.W. Cahn, Acta Metall, 27 (1979), p. 1085.CrossRefGoogle Scholar
  31. 31.
    J.D. van der Waals, Knoink. Akad. Weten. Amsterdam (Sec. 1) 1 (1893), p. 8 (in Dutch); English translation (with commentary): J.S. Rowlinson, J. Stat. Phys. 20 (1979), p. 197.Google Scholar
  32. 32.
    K. Wu, Y.A. Chang, and Y. Wang, Scripta mater., 50 (2004), pp. 1145–1150.CrossRefGoogle Scholar
  33. 33.
    I. Steinbach et al., Physica D, 94 (1996), pp. 135–147.CrossRefGoogle Scholar
  34. 34.
    B. Jonsson, ISIJ Int., 35 (11) (1995), pp. 1415–1421.Google Scholar
  35. 35.
    D. Furrer, private communication (2004).Google Scholar
  36. 36.
    R. Castro and L. Seraphin, Mem. Sci. Rev. Met., 63 (1966), pp. 1025–1058.Google Scholar
  37. 37.
    C. Shen (Ph.D. thesis, Ohio State University, 2004).Google Scholar
  38. 38.
    H.I. Aaronson and C. Wells, Trans. AIME, 206 (1956), pp. 1216–1223.Google Scholar
  39. 39.
    W.W. Mullins and R.F. Sekerka, J. Applied Physics, 34 (1963), p. 323.CrossRefGoogle Scholar
  40. 40.
    I. Loginova, J. Agren, and G. Arnberg, Acta Mater, 52 (13) (2004), p. 4055–4063.CrossRefGoogle Scholar
  41. 41.
    J.P. Simmons, C. Shen, and Y. Wang, Scripta Mater., 43 (2000), p. 935.CrossRefGoogle Scholar
  42. 42.
    O.M. Ivasishin et al., Mat. Sci. Eng. A-Struct., 337 (2002), p. 88.CrossRefGoogle Scholar
  43. 43.
    S.L. Semiatin, et al., Mat. Sci. Eng. A-Struct., 299 (2001), p. 225.CrossRefGoogle Scholar
  44. 44.
    N. Ma et al., Acta Mater., 52 (2004), p. 3869.CrossRefGoogle Scholar
  45. 45.
    W. Read and W. Shockley, Phys. Rev., 78 (1950), p. 275.CrossRefGoogle Scholar
  46. 46.
    Y. Huang and H.J. Humphreys, Acta Metall, 48 (2000), p. 2017.Google Scholar
  47. 47.
    N. Ma and Y. Wang, Materials Processing and Design: Modeling, Simulation and Applications: NUMIFORM 2004, 71 (2004), p. 1700.Google Scholar

Copyright information

© TMS 2005

Authors and Affiliations

  • Y. -Z. Wang
    • 1
  • N. Ma
    • 1
  • Q. Chen
    • 1
  • F. Zhang
    • 2
  • S. L. Chen
    • 2
  • Y. A. Chang
    • 3
  1. 1.the Department of Materials Science & EngineeringOhio State UniversityColumbus
  2. 2.CompuTherm, LLCMadison
  3. 3.the Department of Materials Science & Engineeringthe University of Wisconsin-MadisonUSA

Personalised recommendations