Advertisement

JOM

, Volume 57, Issue 5, pp 35–39 | Cite as

The superplastic forming of bulk metallic glasses

  • Jan Schroers
Overview Casting Defects

Abstract

Superplastic forming (SPF) is introduced in this article as a net-shape processing method for bulk metallic glasses (BMGs), commercially known as Liquidmetal® alloys. This method decouples fast cooling and forming of the BMG. Forming takes place in the supercooled liquid region, where the BMG exists as a highly viscous liquid and increases its fluidity with increasing temperature. The SPF method is very similar to techniques used for processing thermoplastics. In this work, a simple flow law is used to quantify the forming ability and to estimate both the potential and the limitations of the SPF method. This process is especially well suited to replicate small features and thin sections with high aspect ratios, which makes this process appropriate for microelectromechanical systems, nano- and microtechnology, jewelry, medical and optical applications, and data storage.

Keywords

Bulk Metallic Glass Processing Window Feedstock Material Supercooled Liquid Region Fragile Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kui, A.L. Greer, and D. Turnbull, Appl. Phys. Lett., 45 (1984), p. 615.CrossRefGoogle Scholar
  2. 2.
    N. Nishiyama and A. Inoue, Mater. Trans. JIM, 37 (1996), p. 1531.Google Scholar
  3. 3.
    I.-R. Lu et al., J. Non-Cryst. Solids, 250–252 (1999), p. 577.CrossRefGoogle Scholar
  4. 4.
    A. Inoue et al., Mater. Trans. JIM, 31 (1990), p. 104.Google Scholar
  5. 5.
    A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM, 31 (1990), p. 177.Google Scholar
  6. 6.
    A. Peker and W.L. Johnson, Appl. Phys. Lett., 63 (1993), p. 2342.CrossRefGoogle Scholar
  7. 7.
    J. Schroers and W.L. Johnson, Appl. Phys. Lett., 84 (2004), p. 3666.CrossRefGoogle Scholar
  8. 8.
    V. Ponnambalam, S.J. Poon, and G.J. Shiftlet, J. of Mat. Res., 19 (2004), p. 1320.CrossRefGoogle Scholar
  9. 9.
    Z.P. Lu et al., Phys. Rev. Lett., 92 (2004), p. 245503.CrossRefGoogle Scholar
  10. 10.
    J. Schroers et al., Appl. Phys. Lett. (2004), submitted.Google Scholar
  11. 11.
    J. Schroers and W.L. Johnson, Phys. Rev. Lett., 93 (2004), p. 255506.CrossRefGoogle Scholar
  12. 12.
    F. Guo et al., Appl. Phys. Lett., 86 (2005) p. 91907.CrossRefGoogle Scholar
  13. 13.
    R. Busch, JOM, 52 (7) (2000), p. 39.CrossRefGoogle Scholar
  14. 14.
    J. Schroers et al., Appl. Phys. Lett., 74 (1999), p. 2806.CrossRefGoogle Scholar
  15. 15.
    J. Schroers et al., Acta Materialia, 49 (2001), p. 2773.CrossRefGoogle Scholar
  16. 16.
    E.A. Muccio, Plastic Part Technology (Materials Park, OH: ASM International, 1991).Google Scholar
  17. 17.
    H.J. Leamy, H.S. Chen, and T.T. Wang, Metallurgical Transactions, 3 (1972), p. 699.Google Scholar
  18. 18.
    C.A. Pampillo and H.S. Chen, Materials Science and Engineering, 13 (1974), p. 181.CrossRefGoogle Scholar
  19. 19.
    N. Nishiyama and A. Inoue, Mat. Trans. JIM, 40 (1999), p. 64.Google Scholar
  20. 20.
    Y. Saotome et al., J. of Materials Processing Technology, 113 (2001), p. 64.CrossRefGoogle Scholar
  21. 21.
    Y. Saotome et al., Scripta Mat., 44 (2001), p. 1541.CrossRefGoogle Scholar
  22. 22.
    Y. Saotome et al., Intermetallics, 10 (2002), p. 1241.CrossRefGoogle Scholar
  23. 23.
    N.H. Pryds, Mater. Sci. Eng., A375-377 (2004), p. 186.Google Scholar
  24. 24.
    J. Schroers et al., J. of Appl. Phys., 96 (2004), p. 7723.CrossRefGoogle Scholar
  25. 25.
    Y. Kawamura et al., Mater. Sci. Eng., 98 (1988), p. 415.CrossRefGoogle Scholar
  26. 26.
    Y. Kawamura, H. Kato, and A. Inoue, Appl. Phys. Lett., 67 (1995), p. 2008.CrossRefGoogle Scholar
  27. 27.
    Y. Kawamura et al., Mater. Sci. Eng., 98 (1988), p. 449.CrossRefGoogle Scholar
  28. 28.
    D.J. Sordelet et al., J. Mater. Res., 17 (2002), p. 186.CrossRefGoogle Scholar
  29. 29.
    I. Karaman et al., Metall. and Met. Trans. A, 34A (2003), p. 247.Google Scholar
  30. 30.
    J. Lu, G. Ravichandran, and W.L. Johnson, Acta Materialia, 51 (2003), p. 3429.CrossRefGoogle Scholar
  31. 31.
    T.A. Waniuk, J. Schroers, and W.L. Johnson, Appl. Phys. Lett., 78 (2001), p. 1213.CrossRefGoogle Scholar
  32. 32.
    T.A. Waniuk, J. Schroers, and W.L. Johnson, Phys. Rev. B, 67 (2003), p. 184203.CrossRefGoogle Scholar
  33. 33.
    D.R. Lide, Handbook of Chemistry and Physics, 73rd edition (Boca Raton, FL: CRC Press, 1992).Google Scholar
  34. 34.
    S. Mukherjee et al., Acta Materialia, 52 (2004), p. 3689.CrossRefGoogle Scholar
  35. 35.
    J. Schroers, R. Busch, and W.L. Johnson, Appl. Phys. Lett., 76 (2000), p. 2343.CrossRefGoogle Scholar
  36. 36.
    X.H. Lin, W.L. Johnson, and W.-K. Rhim, Mater. Trans. JIM, 38 (1997), p. 473.Google Scholar
  37. 37.
    J. Schroers, Y. Wu, and W.L. Johnson, Philosophical Magazine A, 82 (2002), p. 1207.CrossRefGoogle Scholar
  38. 38.
    C.T. Liu, M.F. Chisholm, and M.K. Miller, Intermetallics, 10 (2002), p. 1105.CrossRefGoogle Scholar
  39. 39.
    M.F. de Oliveira et al., Mater. Sci. Forum, 386-3 (2002), p. 53.CrossRefGoogle Scholar
  40. 40.
    A. Inoue, T. Zhang, and T. Masumoto, J. Non-Cryst. Solids, 156–158 (1993), p. 473.CrossRefGoogle Scholar
  41. 41.
    T.D. Shen and R.B. Schwarz, Appl. Phys. Lett., 75 (1999), p. 49.CrossRefGoogle Scholar
  42. 42.
    D.W. Xing et al., J. Alloys and Com., 375 (2004), p. 239.CrossRefGoogle Scholar
  43. 43.
    T. Zhang and A. Inoue, Mater. Trans. JIM, 44 (2003), p. 1143.CrossRefGoogle Scholar
  44. 44.
    V. Ponnambalam, S.J. Poon, and G.J. Shiflet, J. of Mater. Research, 19 (2004), p. 3046.CrossRefGoogle Scholar
  45. 45.
    A.C. Angell, Science, 267 (1995), p. 1924.CrossRefGoogle Scholar
  46. 46.
    C.J. Gilbert, R.O. Ritchie, and W.L. Johnson, Appl. Phys. Lett., 71 (1997), p. 476.CrossRefGoogle Scholar
  47. 47.
    M. Yan, J.F. Sun, and J. Shen, J. Alloys and Com., 381 (2004), p. 86.CrossRefGoogle Scholar

Copyright information

© TMS 2005

Authors and Affiliations

  • Jan Schroers
    • 1
    • 2
  1. 1.Liquidmetal TechnologiesLake Forest
  2. 2.the Keck Laboratory of Engineering Materialsthe California Institute of TechnologiesPasadena

Personalised recommendations