Advertisement

JOM

, Volume 56, Issue 10, pp 64–68 | Cite as

The use of severe plastic deformation techniques in grain refinement

  • Terry C. Lowe
  • Ruslan Z. Valiev
Overview Nanomaterials By SPD

Abstract

Severe plastic deformation (SPD) has emerged as a promising method to produce ultrafine-grained materials with attractive properties. Today, SPD techniques are rapidly developing and are on the verge of moving from lab-scale research into commercial production. This paper discusses new trends in the development of SPD techniques suchas high-pressure torsion and equal-channel angle pressing, as well as new alternative techniques for introducing SPD. The paper also contains a comparative analysis of SPD techniques in terms of their relative capabilities for grain refinement, enhancement of properties, and potential to economically produce ultrafine-grained metals and alloys.

Keywords

Severe Plastic Deformation Equal Channel Angular Pressing Work Piece Accumulative Roll Bonding Accumulative Roll Bonding Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Mater. Sci. Eng. A, 186 (1993), p. 141.Google Scholar
  2. 2.
    T.C. Lowe and R.Z. Valiev, JOM, 52 (April 2000), p. 27.CrossRefGoogle Scholar
  3. 3.
    Y.T. Zhu and T.G. Langdon, JOM, in this issue.Google Scholar
  4. 4.
    T.C. Lowe and R.Z. Valiev, ed., Investigations and Applications of Severe Plastic Deformation (Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000).Google Scholar
  5. 5.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 45 (2000), p. 103.CrossRefGoogle Scholar
  6. 6.
    Y.T. Zhu et al., ed., Ultrafine Grained Materials II (Warrendale, PA: TMS, 2002).Google Scholar
  7. 7.
    Y.T. Zhu et al., ed., Ultrafine Grained Materials III (Warrendale, PA: TMS, 2004).Google Scholar
  8. 8.
    M.J. Zehetbauer and R.Z. Valiev, ed., Proceedings Second International Conference on Nanomaterials by Severe Plastic Deformation: Fundamentals-Processing-Applications (Weinheim, Germany: Wiley-VCH, 2004).Google Scholar
  9. 9.
    T.G. Langdon et al., JOM, 52 (April 2000), p. 30.CrossRefGoogle Scholar
  10. 10.
    S.V. Dobatkin et al., Russ. Metall. (Metally), 1 (2004), p. 94.Google Scholar
  11. 11.
    R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Mater. Sci. Eng., 137 (1999), p. 35.Google Scholar
  12. 12.
    V.M. Segal et al., Russ. Metall. (Metally), 1 (1981), p. 99.Google Scholar
  13. 13.
    R. Lapovok, Inter. J. Fracture, 115 (2002), p. 159.CrossRefGoogle Scholar
  14. 14.
    G.I. Raab et al., Phys. Tech. High Pressure, 10 (2000), p. 73.Google Scholar
  15. 15.
    G.A. Salischev et al., Mater. Sci. Forum, 170–172 (1994), p. 121.Google Scholar
  16. 16.
    Y. Saito et al., Acta Mater., 47 (1999), p. 579.CrossRefGoogle Scholar
  17. 17.
    Y.T. Zhu et al., Metall. and Mater. Trans., 32A (2001), p. 1559.CrossRefGoogle Scholar
  18. 18.
    A.P. Zhilyaev et al., Scripta Mater., 46 (2002), p. 575.CrossRefGoogle Scholar
  19. 19.
    V.M. Segal, Mater. Sci. Eng. A, 197 (1995), p. 157.CrossRefGoogle Scholar
  20. 20.
    V.V. Stolyarov et al., Mater. Sci. Eng. A, 299 (2001), p. 59.CrossRefGoogle Scholar
  21. 21.
    V.S. Zhernakov et al., Scripta Mater., 44 (2001), p. 1765.CrossRefGoogle Scholar
  22. 22.
    R.Z. Valiev, Russian Metall. (Metally), 1 (2004), p. 10.Google Scholar
  23. 23.
    Y. Nishida et al., Scripta Mater., 45 (2001), 256.Google Scholar
  24. 24.
    H.J. Han et al., Mater. Sci. Forum, 408–412 (2002), p. 679.CrossRefGoogle Scholar
  25. 25.
    J.-C. Lee, H.-K. Seok, and J.-Y. Suh, Acta Mater., 50 (2002), p. 4005.CrossRefGoogle Scholar
  26. 26.
    G.J. Raab et al., Mater. Sci Eng. A, in press.Google Scholar
  27. 27.
    V.M. Segal and S.V. Dobatkin, ed., Equal Channel Angular Pressing: Achievements and Directions for Development (a special issue), Russian Metall. (Metally) (2004), p. 6.Google Scholar
  28. 28.
    S.L. Semiatin et al., JOM, in this issue.Google Scholar
  29. 29.
    Y.T. Zhu et al., “Method for Producing Ultrafine-Grained Materials Using Repetitive Corrugation and Straightening,” U.S. patent 6,197,129 (2002).Google Scholar
  30. 30.
    M.I. Mazurskiy et al., Russian Metall. (Metally), 6 (1995), p. 83.Google Scholar
  31. 31.
    Y. Beygelzimer et al., Ultrafine Grained Materials II, ed. Y.T. Zhu et al., (Warrendale, PA: TMS, 2002), p. 43.Google Scholar
  32. 32.
    D.V. Orlov et al., Ultrafine Grained Materials III, ed. Y.T. Zhu et al. (Warrendale, PA: TMS, 2004), p. 457.Google Scholar
  33. 33.
    N. Tsuji et al., Proceedings Second International Conference on Nanomaterials by Severe Plastic Deformation: Fundamentals-Processing-Applications, ed. M.J. Zehetbauer et al. (Weinheim, Germany: Wiley-VCH, 2004), p. 479.Google Scholar
  34. 34.
    J. Richert and M. Richert, Aluminium, 62 (1986), p. 604.Google Scholar
  35. 35.
    F.Z. Utyashev et al., Investigations and Applications of Severe Plastic Deformation, ed. T.C. Lowe and R.Z. Valiev (Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000), p. 73.Google Scholar
  36. 36.
    S.H. Lee et al., Scripta Mater., 46 (2002), p. 281.CrossRefGoogle Scholar
  37. 37.
    S.X. McFadden et al., Nature, 398 (1999), p. 884.Google Scholar
  38. 38.
    R.Z. Valiev et al., J. Mater. Res., 17 (2002), p. 5.CrossRefGoogle Scholar
  39. 39.
    M.J. Zehetbauer et al., Adv. Eng. Mat., 5 (2003).Google Scholar

Copyright information

© TMS 2004

Authors and Affiliations

  • Terry C. Lowe
    • 1
  • Ruslan Z. Valiev
    • 2
  1. 1.Science and Technology Base Programs at Los Alamos National LaboratoryNew Mexico
  2. 2.the Institute of Physics of Advanced Materials at Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations