JOM

, Volume 56, Issue 10, pp 48–52 | Cite as

Atomic-scale friction and its connection to fracture mechanics

  • R. W. Carpick
  • E. E. Flater
  • K. Sridharan
  • D. F. Ogletree
  • M. Salmeron
Research Summary Nanomaterials And Surfaces

Abstract

This paper present a study of contact, adhesion, and friction for nanoasperities using atomic-force microscopy. Proportionality was observed between friction and true contact area, as well as agreement with continuum mechanics models at the nanometer scale, although several features unique to the nanoscale were also observed. The continuum models can be understood in the framework of fracture mechanics and are used to determine the fundamental tribological parameters of nanoscale interfaces: the interfacial shear strength and the work of adhesion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Maboudian and R.T. Howe, J. Vac. Sci. Technol., 15 (1) (1997), p. 1.Google Scholar
  2. 2.
    R. Maboudian, W.R. Ashurst, and C. Carraro, Trib. Lett., 12 (2) (2002), p. 95.CrossRefGoogle Scholar
  3. 3.
    M.P. de Boer et al., J. Microelectromech. Syst., 13 (1) (2004), p. 63.CrossRefGoogle Scholar
  4. 4.
    I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials (London: Edward Arnold, 1992).Google Scholar
  5. 5.
    R.W. Carpick and M. Salmeron, Chem. Rev., 97 (4) (1997), p. 1163.CrossRefGoogle Scholar
  6. 6.
    D.F. Ogletree, R.W. Carpick, and M. Salmeron, Rev. Sci. Instrum., 67 (9) (1996), p. 3298.CrossRefGoogle Scholar
  7. 7.
    M. Varenberg, I. Etsion, and G. Halperin, Rev. Sci. Instrum., 74 (7) (2003), p. 3362.CrossRefGoogle Scholar
  8. 8.
    J.E. Sader, J.W.M. Chon, and P. Mulvaney, Rev. Sci. Instrum., 70 (10) (1999), p. 3967.CrossRefGoogle Scholar
  9. 9.
    Q. Dai et al., Rev. Sci. Instrum., 66 (11) (1995), p. 5266.CrossRefGoogle Scholar
  10. 10.
    J.S. Villarrubia, Surf. Sci., 321 (3) (1994), p. 287.CrossRefGoogle Scholar
  11. 11.
    R.W. Carpick et al., J. Vac. Sci. Technol. B, 14 (2) (1996), p. 1289.CrossRefGoogle Scholar
  12. 12.
    R.W. Carpick et al., Langmuir, 12 (13) (1996), p. 3334.CrossRefGoogle Scholar
  13. 13.
    S.M. Malik, R.P. Fetherston, and J.R. Conrad, J. Vac. Sci. Technol. A, 15 (6) (1997), p. 2875.CrossRefGoogle Scholar
  14. 14.
    S. Morita, S. Fujisawa, and Y. Sugawara, Surf. Sci. Rep., 23 (1) (1996), p. 3.CrossRefGoogle Scholar
  15. 15.
    K.L. Johnson, K. Kendall, and A.D. Roberts, Proc. Roy. Soc. London A, 324 (1558) (1971), p. 301.Google Scholar
  16. 16.
    L.E. McNeil and M. Grimsditch, J. Phys: Condens. Matter, 5 (11) (1992), p. 1681.CrossRefGoogle Scholar
  17. 17.
    J.R. Davis, ed., Metals Handbook (Metals Park, OH: ASM International, 1999).Google Scholar
  18. 18.
    A.H. Cottrell, Introduction to the Modern Theory of Metals (London, U.K. and Brookfield, VT: Institute of Metals, 1988).Google Scholar
  19. 19.
    J.A. Hurtado and K.-S. Kim, Proc. Roy. Soc. London A, 455 (1989) (1999), p. 3363.Google Scholar
  20. 20.
    B.J. Briscoe and D.C.B. Evans, Proc. Roy. Soc. London A, 380 (1779) (1982), p. 389.Google Scholar
  21. 21.
    I.L. Singer et al., Appl. Phys. Lett., 57 (10) (1990), p. 995.CrossRefGoogle Scholar
  22. 22.
    K.L. Johnson, Langmuir, 12 (19) (1996), p. 4510.CrossRefGoogle Scholar
  23. 23.
    B.V. Derjaguin, V.M. Muller, and Y.P. Toporov, J. Colloid Interface Sci., 53 (2) (1975), p. 314.CrossRefGoogle Scholar
  24. 24.
    D. Maugis, J. Colloid Interface Sci., 150 (1) (1992), p. 243.CrossRefGoogle Scholar
  25. 25.
    R.W. Carpick, D.F. Ogletree, and M. Salmeron, J. Colloid Interface Sci., 211 (2) (1999), p. 395.CrossRefGoogle Scholar
  26. 26.
    O. Piétrement and M. Troyon, J. Colloid Interface Sci., 226 (1) (2000), p. 166.CrossRefGoogle Scholar
  27. 27.
    U.D. Schwarz, J. Colloid Interface Sci., 261 (1) (2003), p. 99.CrossRefGoogle Scholar
  28. 28.
    J.A. Greenwood, Proc. Roy. Soc. London A, 453 (1961) (1997), p. 1277.Google Scholar
  29. 29.
    R.W. Carpick, D.F. Ogletree, and M. Salmeron, Appl. Phys. Lett., 70 (12) (1997), p. 1548.CrossRefGoogle Scholar
  30. 30.
    M.A. Lantz et al., Appl. Phys. Lett., 70 (8) (1997), p. 970.CrossRefGoogle Scholar
  31. 31.
    M.A. Lantz et al., Phys. Rev. B, 55 (16) (1997), p. 10776.CrossRefGoogle Scholar
  32. 32.
    O. Pietrement and M. Troyon, Langmuir, 17 (21) (2001), p. 6540.CrossRefGoogle Scholar
  33. 33.
    O. Pietrement and M. Troyon, Surf. Sci., 490 (1–2) (2001), p. L592.Google Scholar
  34. 34.
    M. Enachescu et al., Phys. Rev. Lett., 81 (9) (1998), p. 1877.CrossRefGoogle Scholar
  35. 35.
    M. Enachescu et al., Trib. Lett., 7 (2–3) (1999), p. 73.CrossRefGoogle Scholar
  36. 36.
    M.A. Lantz, S.J. O’Shea, and M.E. Welland, Phys. Rev. B, 56 (23) (1997), p. 15345.CrossRefGoogle Scholar
  37. 37.
    K.L. Johnson, Contact Mechanics (Cambridge, MA.: University Press, 1987).Google Scholar
  38. 38.
    O. Piétrement, J.L. Beaudoin, and M. Troyon, Trib. Lett., 7 (4) (2000), p. 213.CrossRefGoogle Scholar
  39. 39.
    C.J. Drummond and T.J. Senden, Mater. Sci. Forum, 189–190 (1995), p. 107.Google Scholar
  40. 40.
    A. Erdemir and C. Donnet, Modern Tribology Handbook, ed. B. Bhushan (Boca Raton, FL: CRC Press, 2001), Vol. 2, p. 465.Google Scholar
  41. 41.
    R.W. Carpick and J.D. Batteas, Handbook of Nanotechnology, ed. B. Bhushan (New York: Springer-Verlag, 2004), p. 1.Google Scholar
  42. 42.
    L. Wenning and M.H. Muser, Europhys. Lett., 54 (5) (2001), p. 693.CrossRefGoogle Scholar
  43. 43.
    G. He, M.H. Muser, and M.O. Robbins, Science, 284 (5420) (1999), p. 1650.CrossRefGoogle Scholar
  44. 44.
    M.H. Muser, Proceedings of the NATO Advanced Study Institute on Fundamentals of Tribology, ed. B. Bhushan (Dordrecht, Netherlands: Kluwer Academic Publishers, 2001), p. 235.Google Scholar
  45. 45.
    A.R. Burns et al., Langmuir, 15 (8) (1999), p. 2922.CrossRefGoogle Scholar
  46. 46.
    A.R. Burns et al., Phys. Rev. Lett., 82 (6) (1999), p. 1181.CrossRefGoogle Scholar
  47. 47.
    R.W. Carpick et al., Fracture and Ductile vs. Brittle Behavior—Theory, Modeling and Experiment, ed. G. Beltz, K.-S. Kim, and R.L. Selinger (Warrendale, PA: Mater. Res. Soc., 1999), p. 93.Google Scholar
  48. 48.
    R. Lüthi et al., J. Vac. Sci. Technol. B, 14 (2) (1996), p. 1280.CrossRefGoogle Scholar
  49. 49.
    Z. Wei, C. Wang, and C. Bai, Langmuir, 17 (13) (2001), p. 3945.CrossRefGoogle Scholar
  50. 50.
    K.L. Johnson, Proc. Roy. Soc. London A, 453 (1956) (1997), p. 163.CrossRefGoogle Scholar
  51. 51.
    D. Maugis and M. Barquins, J. Phys. D. (Appl. Phys.), 11 (14) (1978), p. 1989.CrossRefGoogle Scholar
  52. 52.
    U.D. Schwarz et al., Phys. Rev. B, 52 (20) (1995), p. 14976.CrossRefGoogle Scholar
  53. 53.
    J.A. Hurtado and K.-S. Kim, Proc. Roy. Soc. London A, 455 (1989) (1999), p. 3385.Google Scholar

Copyright information

© TMS 2004

Authors and Affiliations

  • R. W. Carpick
    • 1
  • E. E. Flater
    • 1
  • K. Sridharan
    • 1
  • D. F. Ogletree
    • 2
  • M. Salmeron
    • 2
  1. 1.the Department of Engineering Physics at the University of WisconsinMadison
  2. 2.the Materials Sciences Division at Lawrence Berkeley National LaboratoryBerkeley

Personalised recommendations