JOM

, 56:38

Nanostructured ceramics in medical devices: Applications and prospects

  • Roger J. Narayan
  • Prashant N. Kumta
  • Charles Sfeir
  • Dong-Hyun Lee
  • Daiwon Choi
  • Dana Olton
Overview Nanomaterials And Surfaces

Abstract

Nanostructured materials may possess unique capabilities for specific interactions with cells, proteins, and DNA. This article reviews several classes of nanostructured ceramics with unique biological functionalities that are being considered for use in medical devices. The properties of calcium phosphate nanoparticles (Nano-CaPs™) and diamond-like carbon-metal nanocomposite films are described in detail.

References

  1. 1.
    P. Moriarty, Reports on Progress in Physics, 64 (2001), pp. 297–381.CrossRefGoogle Scholar
  2. 2.
    J. Narayan et al., Materials Science and Engineering B-Solid State Materials for Advanced Technology, 25 (1) (1994), pp. 5–10.Google Scholar
  3. 3.
    A.K. Sharma et al., Materials Science and Engineering B-Solid State Materials For Advanced Technology, 77 (2) (2000), pp. 139–143.Google Scholar
  4. 4.
    Q. Wei et al., Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films, 17 (6) (1999), pp. 3406–3414.CrossRefGoogle Scholar
  5. 5.
    T.J. Moravec, P. Schmidt, and E.G. Spencer, American Ceramic Society Bulletin, 59 (3) (1980). p. 329.Google Scholar
  6. 6.
    H.S. Tran et al., Journal of Investigative Surgery, 12 (3) (1999), pp. 133–140.CrossRefGoogle Scholar
  7. 7.
    K. Gutensohn et al., Thrombosis Research, 99 (6) (2000), pp. 577–585.CrossRefGoogle Scholar
  8. 8.
    I. De Scheerder et al., Journal of Invasive Cardiology, 12 (8) (2000), pp. 389–394.Google Scholar
  9. 9.
    M.I. Jones et al., Journal of Biomedical Materials Research, 52 (2) (2000), pp. 413–421.CrossRefGoogle Scholar
  10. 10.
    J.M. Luo et al., Thin Solid Films, 345 (1) (1999), pp. 67–70.CrossRefGoogle Scholar
  11. 11.
    L.J. Yu et al., Surface & Coatings Technology, 128 (2000), pp. 484–488.CrossRefGoogle Scholar
  12. 12.
    A. Alanazi et al., Artificial Organs, 24 (8) (2000), pp. 624–627.CrossRefGoogle Scholar
  13. 13.
    J.R. Monties et al., Artificial Organs, 21 (7) (1997), pp. 730–734.CrossRefGoogle Scholar
  14. 14.
    K. Yamazaki et al., Artificial Organs, 22 (6) (1998), pp. 466–474.CrossRefGoogle Scholar
  15. 15.
    P.K. Chu et al., Review of Scientific Instruments, 72 (3) (2001), pp. 1660–1665.CrossRefGoogle Scholar
  16. 16.
    M.I. Jones et al., Diamond and Related Materials, 8 (2–5) (1999), pp. 457–462.CrossRefGoogle Scholar
  17. 17.
    F.Z. Cui and D.J. Li, Surface & Coatings Technology, 131 (1–3) (2000), pp. 481–487.CrossRefGoogle Scholar
  18. 18.
    S.S. Santavirta et al., Clinical Orthopaedics and Related Research, 369 (1999), pp. 92–102.CrossRefGoogle Scholar
  19. 19.
    V.M. Tiainen, Diamond and Related Materials, 10 (2) (2001), pp. 153–160.CrossRefGoogle Scholar
  20. 20.
    S.P.J. Higson and P.M. Vadgama, Analytical Chimica Acta, 271 (1) (1993), pp. 125–133.CrossRefGoogle Scholar
  21. 21.
    A. Cavalcanti and R.A. Freitas, International Journal of Nonlinear Sciences and Numerical Simulation, 3 (3–4) (2002), pp. 743–746.Google Scholar
  22. 22.
    J.P. Sullivan, T.A. Friedmann, and K. Hjort, MRS Bulletin, 26 (4) (2001), pp. 309–311.Google Scholar
  23. 23.
    M. Grischke et al., Diamond and Related Materials, 7 (2–5) (1998), pp. 454–458.CrossRefGoogle Scholar
  24. 24.
    H. Han, F. Ryan, and M. McClure, Surface & Coatings Technology, 121 (1999), pp. 579–584.CrossRefGoogle Scholar
  25. 25.
    I. Alexandrou et al., Electron Microscopy and Analysis 1997 Institute of Physics Conference Series, (153) (1997), pp. 581–584.Google Scholar
  26. 26.
    M.B. Guseva et al., Diamond and Related Materials, 4 (9) (1995), pp. 1142–1144.CrossRefGoogle Scholar
  27. 27.
    N. Kikuchi, Y. Ohsawa, and I. Suzuki, (2–4) (1993), pp. 190–196.Google Scholar
  28. 28.
    A.A. Voevodin et al., Journal of Applied Physics, 78 (6) (1995), pp. 4123–4130.CrossRefGoogle Scholar
  29. 29.
    A.A. Voevodin and M.S. Donley, Surface & Coatings Technology, 82 (3) (1996), pp. 199–213.CrossRefGoogle Scholar
  30. 30.
    K. Koski et al., Surface & Coatings Technology, 80 (1–2) (1996), pp. 195–199.CrossRefGoogle Scholar
  31. 31.
    M.M. Morshed et al., Surface & Coatings Technology, 163 (2003), pp. 541–545.CrossRefGoogle Scholar
  32. 32.
    J. Schwan et al., Journal of Applied Physics, 82 (12) (1997), pp. 6024–6030.CrossRefGoogle Scholar
  33. 33.
    S.R. Kasi et al., Angewandte Chemie-International Edition in English, 27 (9) (1988), pp. 1203–1209.CrossRefGoogle Scholar
  34. 34.
    Y. Lifshitz, Diamond and Related Materials, 5 (3–5) (1996), pp. 388–400.CrossRefGoogle Scholar
  35. 35.
    Q. Wei et al., Journal of Materials Research, 15 (3) (2000), pp. 633–641.Google Scholar
  36. 36.
    Q. Wei et al., Materials Science and Engineering B-Solid State Materials For Advanced Technology, 53 (3) (1998), pp. 262–266.Google Scholar
  37. 37.
    J. Bruley et al., Journal of Microscopy-Oxford, 180 (1) (1995), pp. 22–32.Google Scholar
  38. 38.
    R.B. Thurman and C.P. Gerba, CRC Critical Reviews in Environmental Control, 18 (4) (1989), pp. 295–315.CrossRefGoogle Scholar
  39. 39.
    R.J. Narayan, Proceedings of International Symposium on Adhesion Aspects of Thin Films (AH Zeist, Netherlands: VSP, 2004).Google Scholar
  40. 40.
    J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier, 1994).Google Scholar
  41. 41.
    S. Puajindanetr, S.M. Best, and W. Bonfield, British Ceramic Transactions, 93 (3) (1994), pp. 96–99.Google Scholar
  42. 42.
    A. Lopez-Macipe et al., Journal of Materials Synthesis and Processing, 6 (1) (1998), pp. 21–26.CrossRefGoogle Scholar
  43. 43.
    B.O. Fowler, Inorganic Chemistry, 13 (1) (1974), pp. 194–207.CrossRefGoogle Scholar
  44. 44.
    A. Deptula et al., Journal of Non-Crystalline Solids, 147 (1992), pp. 537–541.CrossRefGoogle Scholar
  45. 45.
    M. Valletregi et al., Journal of Solid State Chemistry, 112 (1) (1994), pp. 58–64.CrossRefGoogle Scholar
  46. 46.
    H. Hattori and Y. Iwadate, Journal of the American Ceramic Society, 73 (6) (1990), pp. 1803–1805.CrossRefGoogle Scholar
  47. 47.
    M. Yoshimura et al., Journal of Materials Science, 29 (13) (1994), pp. 3399–3402.CrossRefGoogle Scholar
  48. 48.
    M.G.S. Murray et al., Journal of Materials Science, 30 (12) (1995), pp. 3061–3074.CrossRefGoogle Scholar
  49. 49.
    G.K. Lim et al., Materials Letters, 28 (4–6) (1996), pp. 431–436.CrossRefGoogle Scholar
  50. 50.
    K.C.B. Yeong, J. Wang, and S.C. Ng, Biomaterials, 22 (20) (2001), pp. 2705–2712.CrossRefGoogle Scholar
  51. 51.
    W.L. Suchanek et al., Biomaterials, 23 (3) (2002), pp. 699–710.CrossRefGoogle Scholar
  52. 52.
    Y. Fang et al., Journal of Materials Research, 7(8) (1992), pp. 2294–2298.Google Scholar
  53. 53.
    H. Tagai and H. Aoki, Mechanical Properties of Biomaterials, ed. G.W. Hastings and D.F. Williams (Hoboken, NJ: John Wiley, 1980), pp. 477–488.Google Scholar
  54. 54.
    M. Jarcho et al., Journal of Materials Science, 11 (11) (1976), pp. 2027–2035.CrossRefGoogle Scholar
  55. 55.
    C. Sfeir, J. Bennett, and P. Kumta, Molecular Therapy, 7 (5) (2003), p. S225.Google Scholar
  56. 56.
    M. Lal et al., Chemistry of Materials, 12 (9) (2000), pp. 2632–2639.CrossRefGoogle Scholar
  57. 57.
    J.S. Wang, S. Goodman, and P. Aspenberg, Clinical Orthopaedics and Related Research, 304 (1994), pp. 272–279.Google Scholar
  58. 58.
    F.L. Graham and A.J. Vandereb, Virology, 52 (2) (1973), pp. 456–467.CrossRefGoogle Scholar
  59. 59.
    W.T. Godbey, K.K. Wu, and A.G. Mikos, Proceedings of the National Academy of Sciences USA, 96 (9) (1999), pp. 5177–5181.CrossRefGoogle Scholar
  60. 60.
    M.C. Chang et al., Journal of Materials Science Letters, 20 (13) (2001), pp. 1129–1201.CrossRefGoogle Scholar
  61. 61.
    M.C. Chang et al., Journal of Materials Science: Materials in Medicine, 13 (2002), pp. 993–997.CrossRefGoogle Scholar
  62. 62.
    T. Kawakami et al., Biomaterials, 13 (11) (1992), pp. 759–763.CrossRefGoogle Scholar
  63. 63.
    Y. Zhang and M.Q. Zhang, Journal of Biomedical Materials Research, 62 (3) (2002), pp. 378–386.CrossRefGoogle Scholar
  64. 64.
    P. Li et al., Journal of the American Ceramic Society, 75 (1992), pp. 2094–2097.CrossRefGoogle Scholar
  65. 65.
    A.J. Ruys, Journal of the Australian Ceramic Society, 29 (1993), pp. 67–71.Google Scholar
  66. 66.
    M. Shirkhanzadeh and M. Azadegan, Journal of Materials Science: Materials in Medicine, 9 (1998), pp. 385–391.CrossRefGoogle Scholar
  67. 67.
    T.N. Kim et al., Journal of Materials Science: Materials in Medicine, 9 (1998), pp. 129–134CrossRefGoogle Scholar
  68. 68.
    E.S. Ahn et al., Nano Letters, 1 (3) (2001), pp. 149–153.CrossRefGoogle Scholar
  69. 69.
    T.J. Webster et al., Journal of Biomedical Materials Research, 51 (2000), pp. 475–483.CrossRefGoogle Scholar
  70. 70.
    Shoso Shingubara, Journal of Nanoparticle Research, 5 (1–2) (2003), pp. 17–30.CrossRefGoogle Scholar
  71. 71.
    M. Karlsson et al., Biomaterials, 24 (2003), pp. 3039–3046.CrossRefGoogle Scholar
  72. 72.
    L. He, Y. Mai, and Z. Chen, Materials Science and Engineering A, 367 (2004), pp. 51–56.CrossRefGoogle Scholar
  73. 73.
    M.M. Cowan et al., Journal of Industrial Microbiology & Biotechnology, 30 (2) (2003), pp. 102–106.Google Scholar

Copyright information

© TMS 2004

Authors and Affiliations

  • Roger J. Narayan
    • 1
  • Prashant N. Kumta
    • 2
  • Charles Sfeir
    • 3
    • 4
  • Dong-Hyun Lee
    • 5
  • Daiwon Choi
    • 5
  • Dana Olton
    • 6
  1. 1.the School of Materials Science and Engineering at Georgia Institute of TechnologyAtlanta
  2. 2.the Department of Materials Science and Engineering and the Department of Biomedical Engineering at Carnegie Mellon UniversityPittsburgh
  3. 3.the Department of Oral Medicine at the University of PittsburghPittsburgh
  4. 4.the Department of Biomedical Engineering at Carnegie Mellon UniversityPittsburgh
  5. 5.the Department of Materials Science and Engineering at Carnegie Mellon UniversityPittsburgh
  6. 6.the Department of Materials Science and Engineering and the Department of Biomedical Engineering at Carnegie Mellon UniversityPittsburgh

Personalised recommendations