, Volume 56, Issue 11, pp 46–48 | Cite as

The technologies of titanium powder metallurgy

  • F. H. Froes
  • S. J. Mashl
  • J. C. Hebeisen
  • V. S. Moxson
  • V. A. Duz
Overview Titanium


Titanium alloys exhibit attractive mechanical properties but they are expensive. This paper reviews the current status of titanium powder metallurgy which offers near-net shape cost-effective approaches to the fabrication of components.


Titanium Alloy Master Alloy Titanium Powder Titanium Hydride Titanium Sponge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.H. Froes, D. Eylon, and H.B. Bomberger, Titanium Technology: Current Status and Future Trends (Dayton, OH: TDA, 1985).Google Scholar
  2. 2.
    F.H. Froes, T-L Yau, and H.G. Weidinger, Structure and Properties of Non-Ferrous Alloys, 6 (8) (1996), p. 399.Google Scholar
  3. 3.
    F.H. (Sam) Froes, Handbook of Advanced Materials, editor-in-chief James K. Wessel (New York: McGraw-Hill, 2001), p. 271.Google Scholar
  4. 4.
    F.H. (Sam) Froes, Handbook of Chemical Industry Economics, Inorganic, editor-in-chief Jeff Ellis (New York: John Wiley and Sons, 2001).Google Scholar
  5. 5.
    Brian E. Hurless and F.H. (Sam) Froes, Advanced Materials and Processes, (December 2002), p. 37.Google Scholar
  6. 6.
    F.H. (Sam) Froes et al., Titanium P/M in Aerospace and Automotive Components (Princeton, NJ: MPIF, in press).Google Scholar
  7. 7.
    F.H. Froes and D. Eylon, International Materials Reviews, 35 (1990), p. 162.Google Scholar
  8. 8.
    F.H. Froes and C. Suryanarayana, “Reviews in Particulate Materials, 1 (1993), p. 223.Google Scholar
  9. 9.
    F.H. (Sam) Froes, Metal Powder Report, 57 (4) (2002).Google Scholar
  10. 10.
    S.J. Mashl and J.C. Hebeisen, Automotive Fatigue Design and Applications, compiled by R. Chernenkoff and W. Jandeska, Jr. (Princeton, NJ: MPIF, 2003), in press.Google Scholar
  11. 11.
    C. Draney, F.H. (Sam) Froes, and J.C. Hebeisen, Materials Technology/Advanced Performance Materials, to be published.Google Scholar
  12. 12.
    O. Ivasishin et al., High Performance Metallic Materials for Cost-Sensitive Applications, ed. F.H. Froes et al. (Warrendale, PA: TMS, 2002), pp. 117–128.Google Scholar
  13. 13.
    R.M. German, Powder Metallurgy Science, 2nd Edition (Princeton, NJ: MPIF, 1994), p. 192 et seq.Google Scholar
  14. 14.
    F.H. (Sam) Froes and R.M. German, Metal Powder Report, 55 (6) (2000), p. 12.CrossRefGoogle Scholar
  15. 15.
    J.A. Grohowski, B.C. Sherman, and J.T. Strauss, (Princeton, NJ: MPIF, 2003).Google Scholar
  16. 16.
    V.S. Moxson et al., Automotive Fatigue Design and Applications, ed. R. Chernenkoff and W. Jandeska, Jr. (Princeton, NJ: MPIF, 2003) In press.Google Scholar
  17. 17.
    H. Fujii et al., Nippon Steel Tech. Rpt., No. 85 (January 2002), p. 77.Google Scholar
  18. 18.
    G. Hoffman and C.M. Sonsino, Automotive Fatigue Design and Applications, ed. R. Chernenkoff and W. Jandeska, Jr. (Princeton, NJ: MPIF, 2003), in press.Google Scholar
  19. 19.
    O.N. Senkov, J.J. Jonas, and F.H. Froes, JOM, 48 (7) (1996), p. 42.Google Scholar
  20. 20.
    F.H. (Sam) Froes, O.N. Senkov and J. Qazi, IMR, 49 (3–4) (2004), p. 227.CrossRefGoogle Scholar

Copyright information

© TMS 2004

Authors and Affiliations

  • F. H. Froes
    • 1
  • S. J. Mashl
    • 2
  • J. C. Hebeisen
    • 2
  • V. S. Moxson
    • 3
  • V. A. Duz
    • 3
  1. 1.IMAPthe University of IdahoMoscow ID
  2. 2.Bodycote HIP-North AmericaAndover
  3. 3.ADMA Products, Inc.Twinsburg

Personalised recommendations