, Volume 56, Issue 9, pp 40–43 | Cite as

Pt-Al-Cr-Ni superalloys: Heat treatment and microstructure

  • S. Vorberg
  • M. Wenderoth
  • B. Fischer
  • U. Glatzel
  • R. Völkl
Research Summary Beyond Ni-Based Superalloys


In this study; the microstructure of precipitation-strengthened platinum-based superalloys after homogenization heat treatment and various cooling regimes was investigated. The study focused on the lattice misfit between the γ matrix and γ′ precipitate phase as well as the precipitate morphologies. Water quenching led to a γ single-phase structure, whereas air cooling resulted in the precipitation of 200 nm sized γ′ cubes with 30% volume fraction. Further investigations found that chromium in Pt-Al-Cr-Ni alloys had a strong γ′ promoting effect.


82Al 12Ni Water Quenching Furnace Cool Precipitate Volume Fraction Homogenization Heat Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Wollmer et al., Surface and Coatings Technology, 167 (1) (2003), pp. 83–96.CrossRefGoogle Scholar
  2. 2.
    Y. Yamabe-Mitarai et al. JOM, in this issue.Google Scholar
  3. 3.
    R. Süss et al., Mater. Sci. Eng. A, 338 (2002), pp. 133–141.CrossRefGoogle Scholar
  4. 4.
    L.A. Cornish, B. Fischer, and R. Völkl, MRS Bulletin, 28 (9) (2003), pp. 632–638.Google Scholar
  5. 5.
    P.J. Hill et al., Proc. High Temperature Corrosion and Protection (Hokkaido, Japan: Science Reviews 2000), pp. 185–190.Google Scholar
  6. 6.
    P.J. Hill et al., Struct. Intermetallics 2001, ed. K.J. Hemker et al. (Warrendale, PA: TMS, 2001), pp. 527–533.Google Scholar
  7. 7.
    P.J. Hill et al., Mater. Sci. Eng., 329 (2002), pp. 295–304.CrossRefGoogle Scholar
  8. 8.
    P.J. Hill, G.B. Fairbank, and L.A. Cornish, JOM, 53 (10) (2001), pp. 19–20.CrossRefGoogle Scholar
  9. 9.
    L.A. Cornish et al., J. Min. Met., 38 (3–4) B (2002), pp. 197–204.CrossRefGoogle Scholar
  10. 10.
    P.J. Hill, Y. Yamabe-Mitarai, and I.M. Wolff, Scripta Mat., 44 (1) (2001), pp. 43–48.CrossRefGoogle Scholar
  11. 11.
    M. Hüller et al., submitted to Acta Mat. (June 2004).Google Scholar
  12. 12.
    M. Wenderoth et al., submitted to Met. Mat. Trans. A (April 2004).Google Scholar
  13. 13.
    R. Völkl et al., submitted to Met. Mat. Trans A (May 2004).Google Scholar
  14. 14.
    Y. Oya, Y. Mishima, and T. Suzuki, Z. Metallkde., 78 (7) (1987), pp. 485–490.Google Scholar
  15. 15.
    H. Meininger and M. Ellner, J. Alloys Comp., 353 (2003), pp. 207–212.CrossRefGoogle Scholar
  16. 16.
    T. Biggs et al., Plat. Met. Rev., 47 (2003), pp. 142–156.Google Scholar
  17. 17.
    A.J.C. Wilson, International Tables for Crystallography, vol. C: Mathematical, Physical and Chemical Tables (Dordrecht, NL: Kluwer Academic Press, 1992), p. 42.Google Scholar
  18. 18.
    P.J. Hill et al., J. All. Comp., 322 (2001), pp. 166–175.CrossRefGoogle Scholar
  19. 19.
    K. Schubert, Kristallstrukturen zweikomponentiger Phasen, 1st edition (Berlin / Göttingen, Heidelberg: Springer Verlag OHG., 1964), p. 30.Google Scholar
  20. 20.
    L. Müller, U. Glatzel, and M. Feller-Kniepmeier, Acta Metall. Mater., 40 (6) (1992), pp. 1321–1327.CrossRefGoogle Scholar
  21. 21.
    Y.Y. Qiu, J. All. Comp., 232 (1996), pp. 254–263.CrossRefGoogle Scholar

Copyright information

© TMS 2004

Authors and Affiliations

  • S. Vorberg
    • 1
  • M. Wenderoth
    • 2
  • B. Fischer
    • 1
  • U. Glatzel
    • 2
  • R. Völkl
    • 3
  1. 1.the University of Applied ScienceJenaGermany
  2. 2.the Department of Metallic MaterialsUSA
  3. 3.the University of BayreuthGermany

Personalised recommendations