, Volume 55, Issue 12, pp 60–65 | Cite as

Using JMatPro to model materials properties and behavior

  • N. Saunders
  • U. K. Z. Guo
  • X. Li
  • A. P. Miodownik
  • J. -Ph. Schillé
Industrial Insight Phase Diagrams


This article describes the development of a new multi-platform software program called JMatPro for calculating the properties and behavior of multi-component alloys. These properties are wide ranging, including thermophysical and physical properties (from room temperature to the liquid state), time-temperature-transformation/continuous-cooling transformation diagrams, stress/strain diagrams, proof and tensile stress, hardness, coarsening of γ′ and γ″, and creep. A feature of the new program is that the calculations are based on sound physical principles rather than purely statistical methods. Thus, many of the shortcomings of methods such as regression analysis can be overcome. With this program, sensitivity to microstructure can be included for many of the properties and the true inter-relationship between properties can be developed, for example in the modeling of creep and precipitation hardening.


Grain Boundary Mushy Zone Duplex Stainless Steel Rupture Strength Ultimate Tensile Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Saunders and A.P. Miodownik, CALPHAD—Calculation of Phase Diagrams, Pergamon Materials Series, vol. 1, ed. R.W. Cahn (Oxford: Elsevier Science, 1998).Google Scholar
  2. 2.
    N. Saunders et al., Materials Design Approaches and Experiences, ed. J.-C. Zhao et al. (Warrendale, PA: TMS, 2001), p. 185.Google Scholar
  3. 3.
    H.L. Lukas, J. Weiss, and E.-Th. Henig, CALPHAD, 6 (1982), p. 229.CrossRefGoogle Scholar
  4. 4.
    U.R. Kattner, W.J. Boettinger, and S.R. Coriell, Z. Metallkde., 87 (1996), p. 522.Google Scholar
  5. 5.
    Z. Fan, P. Tsakiropoulos, and A.P. Miodownik, J. Mater. Sci., 29 (1994), p. 141.CrossRefGoogle Scholar
  6. 6.
    Z. Fan, Phil. Mag. A, 73 (1996), p. 1663.Google Scholar
  7. 7.
    A.P. Miodownik, N. Saunders, and J.-P. Schillé, unpublished research.Google Scholar
  8. 8.
    I.B. Fieldhouse and J.I. Lang, U.S. Air Force Report, WADD-TR-69-904 (1961).Google Scholar
  9. 9.
    H. Leggett et al., U.S. Air Force Report, AFML-TR-65-147 (1965).Google Scholar
  10. 10.
    B.L. Rhodes et al., Adv. Cryogenic Engineering, 8 (1963), p.v278.Google Scholar
  11. 11.
    W.J. Boettinger et al., Modeling of Casting, Welding and Advanced Solidification Processes VII, ed. M. Cross et al. (Warrendale, PA: TMS, 1995), p. 649.Google Scholar
  12. 12.
    N. Saunders, Superalloys 1996, ed. R. Kissinger et al. (Warrendale, PA: TMS, 1996), p. 115.Google Scholar
  13. 13.
    B.A. Boutwell et al., Superalloys 718, 625, 706 and Various Derivatives, ed. E.A. Loria, (Warrendale, PA: TMS, 1996), p. 99.Google Scholar
  14. 14.
    N. Saunders, Materials Science Forum, 217–222 (1996), p. 667.CrossRefGoogle Scholar
  15. 15.
    N. Saunders, Light Metals 1997, ed. R. Huglen (Warrendale, PA: TMS, 1997), p. 911.Google Scholar
  16. 16.
    R.A. Harding and N. Saunders, Trans. American Foundryman’s Society, 105 (1997), p. 451.Google Scholar
  17. 17.
    N. Saunders, Solidification Processing 1997, ed. J. Beech and H. Jones (Sheffield: Univ. Sheffield, 1997), p. 362.Google Scholar
  18. 18.
    N. Saunders, J. JILM, 51 (2001), p. 141.Google Scholar
  19. 19.
    N. Saunders et al., Modeling of Casting, Welding and Advanced Solidification Processes X, ed. D. Stefanescu et al. (Warrendale, PA: TMS, 2003), p. 669.Google Scholar
  20. 20.
    L. Backerud, E. Krol, and J. Tamminen, Solidification Characteristics of Aluminium Alloys: Vols. 1 and 2 (Oslo: Tangen Trykk A/S, 1986).Google Scholar
  21. 21.
    N. Saunders et al., Light Metals 2003, ed. P. Crepeau (Warrendale, PA: TMS, 2003), p. 999.Google Scholar
  22. 22.
    N. Saunders et al., Magnesium Technology 2003, ed. H.I. Kaplan, (Warrendale, PA: TMS, 2003), p. 135. or23.|N. Saunders et al., “Modeling of the Thermo-Physical and Physical Properties for Solidification of Ni-based Superalloys” Proc. Conf. Liquid Metal Processing 2003, eds. P.D. Lee et al., pp. 253–260.Google Scholar
  23. 24.
    N. Saunders et al., to be published in Proc. Conf. Ti-2003.Google Scholar
  24. 25.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (London: Chapman & Hall, 1992).Google Scholar
  25. 26.
    X. Li, A.P. Miodownik, and N. Saunders, Mater. Sci. Tech., 18 (2002), p. 861.CrossRefGoogle Scholar
  26. 27.
    J.W. Martin, R.D. Doherty, and B. Cantor, Stability of Microstructure in Metallic Systems (Cambridge: Cambridge University Press, 1997).Google Scholar
  27. 28.
    J.O. Nilsson and A. Wilson, Materials Science and Technology, 9 (1993), p. 545.Google Scholar
  28. 29.
    C.M.F. Rae et al., Superalloys 2000, ed. K.A. Green et al. (Warrendale, PA: TMS, 2000), p. 767.Google Scholar
  29. 30.
    N. Saunders, M. Fahrmann, and C.J. Small, Superalloys 2000, ed. K.A. Green et al. (Warrendale, PA: TMS, 2000), p. 803.Google Scholar
  30. 31.
    A. Oradei-Basile and J.F. Radavich, Superalloys 718, 625 and Various Derivatives (1991), ed. E.A. Loria (Warrendale, PA: TMS, 1991), p. 325.Google Scholar
  31. 32.
    R.B. Nicholson, Phase Transformations (Materials Park, OH: ASM, 1970), p. 269.Google Scholar
  32. 33.
    J.R. Toran and R.R. Biederman, Titanium Science and Technology, ed. H. Kimura and O. Izumi (Warrendale, PA: Met. Soc. AIME, 1980), p. 1491.Google Scholar
  33. 34.
    S. Bein and J. Bechet, Titanium ’95, ed. P. Bleckinsop et al. (London: The Institute of Materials, 1996), p. 2353.Google Scholar
  34. 35.
    J.S. Kirkaldy, Scand. J. Metall., 20 (1991), p. 50.Google Scholar
  35. 36.
    J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis, Hardenability Concepts with Applications to Steel, ed. J.S. Kirkaldy and D.V. Doane (Warrendale, PA: AIME, 1978), p. 82.Google Scholar
  36. 37.
    J.S. Kirkaldy and D. Venugopolan, Phase Transformations in Ferrous Alloys, ed. A.R. Marder and J.I. Goldstein (Warrendale, PA: AIME, 1984), p. 125.Google Scholar
  37. 38.
    X. Li, N. Saunders, and A.P. Miodownik, Metall. Mater. Trans. A, 33A (2002), p. 3367.CrossRefGoogle Scholar
  38. 39.
    I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 19 (1961), p. 35.CrossRefGoogle Scholar
  39. 40.
    C. Wagner, Z. Elektrochem, 65 (1961), p. 581.Google Scholar
  40. 41.
    H.A. Calderon et al., Acta Metall., 42 (1994), p. 991.CrossRefGoogle Scholar
  41. 42.
    E.O. Hall, Yield Point Phenomena in Metals and Alloys (London: Macmillan, 1970), p. 38.Google Scholar
  42. 43.
    X. Li, A.P. Miodownik, and N. Saunders, J. Phase Equilibria, 22 (2001), p. 247.CrossRefGoogle Scholar
  43. 44.
    L.M. Brown and R.K. Ham, Strengthening Mechanisms in Crystals (London: Applied Science, 1971).Google Scholar
  44. 45.
    W. Hüther and B. Reppich, Z. Metallkde., 69 (1978), p. 628.Google Scholar
  45. 46.
    A.P. Miodownik and N. Saunders, Applications of Thermodynamics in the Synthesis and Processing of Materials, ed. P. Nash and B. Sundman (Warrendale, PA: TMS, 1995), p. 91.Google Scholar
  46. 47.
    V.W.I. Mitchell, Z. Metallkde., 7 (1966), p. 586.Google Scholar
  47. 48.
    B. Reppich et al., Mater. Sci. Eng., 83 (1986), p. 45.CrossRefGoogle Scholar
  48. 49.
    D.J. Chellman, A.J. Luévano, and A.J. Ardell, Strength of Metals and Alloys (London: Freund Publishing House, 1991), p. 537.Google Scholar
  49. 50.
    A.P. Miodownik et al., “Modeling of Creep in Nickel Based Superalloys,” to be published in Proc. Conf. 6th International Charles Parsons Turbine Conference, eds. A. Strang et al., (London: Maney, 2003), pp. 779–788.Google Scholar
  50. 51.
    X.S. Xie et al., Scripta Metall., 16 (1982), p. 483.CrossRefGoogle Scholar
  51. 52.
    C.R. Barrett and O.D. Sherby, Trans. Met. Soc. AIME, 233 (1965), p. 1116.Google Scholar
  52. 53.
    P.W. Davies and B. Wilshire, Structural Processes in Creep, ed. A.G. Quarrell (London: Iron and Steel Institute, 1961), p. 34.Google Scholar
  53. 54.
    C.T. Sims et al. editors, Superalloys II (New York: Wiley & Sons, 1987).Google Scholar
  54. 55.
    W. Betteridge and J. Heslop, The NIMONIC Alloys and Other Ni-Based High Temperature Alloys: 2nd ed., (London: Edward Arnold, 1974).Google Scholar
  55. 56.
    F.B. Pickering, Physical Metallurgy and the Design of Steels (London: Applied Science Publishers, 1978).Google Scholar

Copyright information

© TMS 2003

Authors and Affiliations

  • N. Saunders
    • 1
  • U. K. Z. Guo
    • 2
  • X. Li
    • 2
  • A. P. Miodownik
    • 2
  • J. -Ph. Schillé
    • 2
  1. 1.Thermotech Ltd.Guildford
  2. 2.Sente Software Ltd.GuildfordU.K.

Personalised recommendations