JOM

, Volume 53, Issue 4, pp 39–41

Fabricating sports equipment components via powder metallurgy

  • V. S. Moxson
  • F. H. (Sam) Froes
Overview Titanium

Abstract

Powder metallurgy (P/M) offers a viable, cost-effective approach to fabricating sports and leisure equipment components. Both complex, monolithic parts and parts produced from materials of quite different densities can be manufactured by this technique. In the latter category, lightweight titanium and heavyweight tungsten can be used in combination to optimally distribute mass, such as in golf club heads. Examples of P/M components used in golfing, skating, baseball, and even darts are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.S. Moxson and F.H. Froes, Materials in Sports, ed. F.H. (Sam) Froes and S.J. Haake (Warrendale, PA: TMS, 2001).Google Scholar
  2. 2.
    F.H. Froes, JOM, 49 (5) (1999), p. 35.Google Scholar
  3. 3.
    R.M. German, Powder Metallurgy Science, Second Edition (Princeton, NJ: Metal Powder Industries Federation, 1994).Google Scholar
  4. 4.
    P.J. Vervoot, R. Vetter, and J. Duszczyk, Adv. Performance Mater., 3 (1996), p. 121.CrossRefGoogle Scholar
  5. 5.
    F.H. Froes and R.M. German, Metal Powder Report, 55 (6) (2000), p. 12.CrossRefGoogle Scholar
  6. 6.
    F.H. Froes, J. Hebeisen, and R. Widmer, Hot Isostatic Pressing Conference 1996 (Materials Park, OH: ASM International, 1996).Google Scholar
  7. 7.
    F.H. Froes, Advanced Materials Processing (ICAMP) Conference 2000, ed. D.L. Zhang, K.L Pickering, and X.Y. Xiong (Institute for Materials Engineering, 2000), p. 551.Google Scholar
  8. 8.
    F.H. Froes and C. Suryanarayana, Reviews in Particulate Materials, ed. A. Bose, R.M. German, and A. Lawley, Vol. 1 (Princeton, N: Metal Powder Industries Federation, 1993), p. 223.Google Scholar
  9. 9.
    F.H. Froes, T-L. Yau, and H.G. Weidinger, Encyclopedia of Materials Science and Technology, ed. R.W. Cahn, P. Haasen, and E.J. Kramer, Vol. 8 (Weinheim, Germany: VCH, 1996), p. 401.Google Scholar
  10. 10.
    F.H. Froes, “Titanium” (Chapters 3.3.5a–3.3.5e), Encyclopedia of Materials Science and Technology, ed. P. Bridenbaugh (New York: Elsevier, to be published 2001).Google Scholar
  11. 11.
    F.H. Froes, “Titanium Alloys” (Chapter 8), Handbook of Advanced Materials, ed. J.K. Weasel (New York: McGraw-Hill Inc., to be published 2001).Google Scholar
  12. 12.
    F.H. Froes, “Titanium Metal Alloys,” Handbook of Chemical Industry Economics, Inorganic, ed. Jeff Ellis (New York: John Wiley and Sons Inc., to be published 2001).Google Scholar
  13. 13.
    F. Arcella and F.H. Froes, JOM, 52 (5) (2000), p. 28.CrossRefGoogle Scholar
  14. 14.
    F.H. Froes, D. Eylon, and C. Suryanarayana, “Thermochemical Processing of Titanium Alloys,” JOM, 42 (3) (1990), p. 26.Google Scholar
  15. 15.
    F.H. Froes, D. Eliezer, and H.G. Nelson, “Hydrogen Effects in Titanium,” Fifth Int. Conf. Hydrogen Effects on Metals, ed. N.R. Moody and R.W. Thompson (Warrendale, PA: TMS, 1995), p. 719.Google Scholar
  16. 16.
    O.N. Senkov, J.J. Jonas, and F.H. Froes, JOM, 48 (7) (1996), p. 42.Google Scholar
  17. 17.
    V. Moxson and F.H. Froes, JOM, 52 (5) (2000), p. 24.CrossRefGoogle Scholar
  18. 18.
    V. Moxson et al., to appear in JOM (May 2001).Google Scholar
  19. 19.
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature, 407 (2000), p. 361.CrossRefGoogle Scholar
  20. 20.
    F.H. Froes, Light Metal Age (February 2001), p. 54.Google Scholar
  21. 21.
    C. Shira and F.H. Froes, Materials in Sports, ed. F.H. (Sam) Froes and S.J. Haake (Warrendale, PA: TMS, 2001).Google Scholar

Copyright information

© TMS 2001

Authors and Affiliations

  • V. S. Moxson
    • 1
  • F. H. (Sam) Froes
    • 2
  1. 1.ADMA Products Inc.USA
  2. 2.Institute for Materials and Advanced Processes (IMAP)the University of IdahoUSA

Personalised recommendations