Advertisement

JOM

, Volume 52, Issue 12, pp 22–27 | Cite as

Manufacturing routes for metallic foams

  • John Banhart
Overview Solidification Science

Abstract

The study of metallic foams has become attractive to researchers interested in both scientific and industrial applications. In this paper, various methods for making such foams are presented and discussed. Some techniques start from specially prepared molten metals with adjusted viscosities. Such melts can be foamed by injecting gases or by adding gas-releasing blowing agents which cause the formation of bubbles during their in-situ decomposition. Another method is to prepare supersaturated metal-gas systems under high pressure and initiate bubble formation by pressure and temperature control. Finally, metallic foams can be made by mixing metal powders with a blowing agent, compacting the mix, and then foaming the compact by melting. The various foaming processes, the foam-stabilizing mechanisms, and some known problems with the various methods are addressed in this article. In addition, some possible applications for metallic foams are presented.

Keywords

Foam Molten Metal Aluminum Foam Metal Foam High Compression Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Banhart, Prog. Mater. Sci., 47 (1) (2001), in press.Google Scholar
  2. 2.
    P. Åsholt, Metal Foams and Porous Metal Structures, ed. J. Banhart, M.F. Ashby, and N.A Fleck (Bremen, Germany: MIT-Verlag, 1999), p. 133.Google Scholar
  3. 3.
    J. Wood, Metal Foams, ed. J. Banhart and H. Eifert (Bremen, Germany: MIT-Verlag, 1997), p. 31.Google Scholar
  4. 4.
    O. Prakash, H. Sang, and J.D. Embury, Mater. Sci. Eng., A199 (1995), p. 195.Google Scholar
  5. 5.
    L.D. Kenny, Mater. Sci. Forum, 217–222 (1996), p. 1883.CrossRefGoogle Scholar
  6. 6.
    A.E. Simone and L.J. Gibson, Acta Mater., 46 (1998), p. 3109.CrossRefGoogle Scholar
  7. 7.
    J.T. Beals and M.S. Thompson, J. Mater. Sci., 32 (1997), p. 3595.CrossRefGoogle Scholar
  8. 8.
    T. Miyoshi, in Ref. 2, p. 125.Google Scholar
  9. 9.
    L. Ma, Z. Song, Scripta Mater., 39 (1998), p. 1523.CrossRefGoogle Scholar
  10. 10.
    V. Shapovalov, Porous and Cellular Materials for Structural Applications, vol. 521, ed. D.S. Schwartz et al. (Warrendale, PA: MRS, 1998), p. 281.Google Scholar
  11. 11.
    F. Baumgärtner, I. Duarte, and J. Banhart, Adv. Eng. Mater., 2 (2000), p. 168.CrossRefGoogle Scholar
  12. 12.
    I. Duarte and J. Banhart, Acta Mater., 48 (2000), p. 2349.CrossRefGoogle Scholar
  13. 13.
    J. Banhart and J. Baumeister, J. Mater. Sci., 33 (1998), p. 1431.CrossRefGoogle Scholar
  14. 14.
    T. Höpler, F. Schörghuber, and F. Simancík, in Ref. 2, p. 79.Google Scholar
  15. 15.
    J. Baumeister, Sandwich Construction 5, vol. I, ed. H.R. Meyer-Piening and D. Zenkert (Solihull, U.K.: EMAS Publishing, 2000), p. 339.Google Scholar
  16. 16.
    J. Banhart et al., Aluminium, 76 (2000), p. 491.Google Scholar
  17. 17.
    W. Seeliger, in Ref. 2, p. 29.Google Scholar
  18. 18.
    J. Banhart et al., German patent 19,813,176 (1998).Google Scholar
  19. 19.
    V. Gergely and T.W. Clyne, Adv. Eng. Mater., 2 (2000), p. 175.CrossRefGoogle Scholar
  20. 20.
    D. Weaire and S. Hutzler, The Physics of Foams (Oxford, U.K.: Oxford University Press, 2000).Google Scholar
  21. 21.
    S.W. Ip, Y. Wang, and J.M. Toguri, Canadian Metallurgical Quarterly, 38 (1999), p. 81.CrossRefGoogle Scholar
  22. 22.
    E.M. Levin, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists (Columbus, OH: American Ceramic Society, 1964).Google Scholar
  23. 23.
    T.B. Massalski, Binary Phase Diagrams (Metals Park, OH: ASM, 1983).Google Scholar
  24. 24.
    Y. Sugimura et al., Acta Mater., 45 (1997), p. 5245.CrossRefGoogle Scholar
  25. 25.
    G. Kaptay, in Ref. 2, p. 141.Google Scholar
  26. 26.
    A. Irretier, P. Weferling, and J. Banhart, to be published.Google Scholar
  27. 27.
    P. Weigand, Untersuchung der Einflußfaktoren auf die pulvermetallurgische Herstellung von Aluminiumschäumen (Bremen, Germany: MIT-Verlag, 1999) [in German].Google Scholar
  28. 28.
    J. Banhart et al., Appl. Phys. Lett., (submitted October 2000)Google Scholar
  29. 29.
    M.F. Ashby et al., Metal Foams: a Design Guide (Boston, MA: Butterworth-Heinemann, 2000).Google Scholar

Copyright information

© Minerals, Metals & Materials Society 2000

Authors and Affiliations

  • John Banhart
    • 1
  1. 1.Fraunhofer-Institute for Advanced Materials in BremenGermany and a reader in physics at University of BremenGermany

Personalised recommendations