Skip to main content
Log in

The possible reduction of alumina to aluminum using hydrogen

  • Research Summary
  • Aluminum Reduction
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Theoretical considerations based on published thermodynamic data show that condensed aluminum should not be formed by direct reaction between hydrogen and alumina. Nevertheless, laboratory experiments by the authors and observations reported by others in the literature have led to the hypothesis that hydrogen dissolved in molten aluminum can possibly reduce alumina to aluminum at high temperature (700–1,700°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Warren, Chemical News, 31 Aug. (1994), p. 102.

  2. A. McLean and H.B. Bell, J. Iron and Steel Inst. (1965), pp. 123–130.

  3. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Subsiances (Berlin, Germany: Springer, 1973), pp. 11, 29, 30–32, 316, and 323.

    Google Scholar 

  4. B. Arghiropoulos et al., Compendium: Symposium Reactivity of Solids (France: Univ. Lyon, de Boer, 1960), pp. 525–539.

    Google Scholar 

  5. S.W. Weller and A.A. Montagna, J. Catalysis, 21 (1971), pp. 303–331.

    Article  CAS  Google Scholar 

  6. JANAF Thermochemical Data, 3rd ed., J. Phys. Chem. Ref. Data, suppl. 14 (1) (1985).

  7. D. Dooley, M. Balooch, and R.D. Olander, Trans. Am. Nucl. Soc., 30 (1978), pp. 163–164.

    CAS  Google Scholar 

  8. C.N. Cochran, Production of Aluminium and Alumina, ed. A.R. Burkin (Chichester, U.K.: Wiley, 1987), pp. 214–237.

    Google Scholar 

  9. K. Tomasek, L. Rabatin, and J. Kocur, Hutnicke Listy (translated from Slovak, 5 (1992), pp. 30–32.

    Google Scholar 

  10. G.K. Sigworth and T.A. Engh, Scand. J. Metall., 11 (1982), pp. 143–149.

    CAS  Google Scholar 

  11. M. Appel and J.P. Frankel, J. Chem. Phys., 42 (311) (1965), pp. 3984–3988.

    Article  CAS  Google Scholar 

  12. C.E. Ransley and H. Neufeld, J. Inst. Metals, 74 (1948), pp. 599–620.

    CAS  Google Scholar 

  13. S. Kato, Sumitomo Light Met. Tech. Rep., 33 (1992), pp. 63–73.

    Google Scholar 

  14. G.H. Aylward and T.J.V. Findlay, SI Chemical Data (New York: Wiley, 1988).

    Google Scholar 

  15. C.J. Simensen, P. Fartum, and A. Andersen, Fresenius Z. Anal. Chem., 319 (1984), pp. 286–292.

    Article  CAS  Google Scholar 

  16. Kirk-Othmer, Encyclopedia of Chem. Techn., vol. 23 (1997), p. 1046.

    Google Scholar 

  17. H. Schäfer, Chemical Transport Reactions (New York: Academic Press, 1964), p. 115.

    Google Scholar 

  18. Gmelin Handbuch, Aluminium, System Number 35 (Weinheim/Bergst, Germany: Verlag Chemie, 1933), p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact H. Kvande, Hydro Aluminium, N-0246 Oslo, Norway; telephone 47 22 73 9155; fax 47 22 73 7778; e-mail Halvor.Kvande@hydro.com.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braaten, O., Kjekshus, A. & Kvande, H. The possible reduction of alumina to aluminum using hydrogen. JOM 52, 47–53 (2000). https://doi.org/10.1007/s11837-000-0047-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0047-7

Keywords

Navigation