Advertisement

JOM

, Volume 52, Issue 5, pp 24–26 | Cite as

Innovations in titanium powder processing

  • Vladimir Moxson
  • O. N. Senkov
  • F. H. Froes
Overview Titanium

Abstract

One way of reducing the cost of titanium components is to use near-net shape powder-metallurgy techniques. This article describes a number of new approaches to producing components using the powder-metallurgy method for the aerospace, industrial, and consumer marketplaces.

Keywords

Sponge Master Alloy Titanium Powder High Specific Strength Titanium Tetrachloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.S. Moxson, O.N. Senkov, and F.H. Froes, Int. J. of PM, 34 (5) (1998), p. 45.Google Scholar
  2. 2.
    F.H. Froes and D. Eylon, Int. Mats. Reviews, 35 (3) (1990), p. 162.Google Scholar
  3. 3.
    F.H. Froes and C. Suryanarayana, Reviews in Particulate Materials, 1 (1993), p. 223.Google Scholar
  4. 4.
    S. Abkowitz et al., P/M in Aerospace, Defense and Demanding Applications—1993, ed. F.H. Froes (Princeton, NJ: MPIJ, 1993), p. 241.Google Scholar
  5. 5.
    F.H. Hayes et al., JOM, 36 (6) (1984), p. 70.Google Scholar
  6. 6.
    W.J. Kroll, Trans. Electrochem. Soc., 78 (1940), p. 35.Google Scholar
  7. 7.
    M.A. Hunter, J. Amer. Chem. Soc., 32 (1910), p. 330.CrossRefGoogle Scholar
  8. 8.
    S. Abkowitz and D. Rowell, JOM, 38 (8) (1986), p. 36.Google Scholar
  9. 9.
    G. Cobel, F. Fisher, and L.E. Snyder, Titanium ′80, Science and Technology, vol. 3, ed. H. Kimura and O. Izumi (Warrendale, PA: TMS, 1980), p. 1969.Google Scholar
  10. 10.
    U. Ginatta et al., Proc. 6th World Titanium Conference, ed. P. Lacombe, R. Tricot, and G. Beranger (Nanterre Cedex, France: Societé Française de Metallurgie, 1989), p. 753.Google Scholar
  11. 11.
    M. Ginatta, in this issue.Google Scholar
  12. 12.
    P.P. Alexander, U.S. patent 2,427,338 (1945).Google Scholar
  13. 13.
    C.F. Yolton, “Gas Atomized Titanium Powder,” Rapidly Solidified Materials (Warrendale, PA: TMS, 1985), p. 97.Google Scholar
  14. 14.
    B.A. Borok, Trans. of Central Research Institute for Ferrous Metallurgy (Moscow, Russia), 43 (1965), p. 69.Google Scholar
  15. 15.
    O.N. Senkov, J.J. Jonas, and F.H. Froes, JOM, 48 (7) (1996), p. 42.Google Scholar
  16. 16.
    O.N. Senkov and F.H. Froes, Hydrogen Energy, 24 (1999), p. 565.CrossRefGoogle Scholar
  17. 17.
    J.S. Montgomery et al., JOM, 49 (5) (1997), p. 45.Google Scholar
  18. 18.
    F.H. Froes, D. Eliezer, and C. Suryanarayana, J. Matls. Sci., 27 (1992), p. 5113.CrossRefGoogle Scholar
  19. 19.
    Y-W Kim, in this issue.Google Scholar
  20. 20.
    C.F. Yolton, U. Habel, and H. Clemens, Advanced Particulate Materials and Processes, ed. F.H. Froes and J. Hebeisen (Princeton, NJ: APMI, 1997), p. 161.Google Scholar
  21. 21.
    V.S. Moxson and A.E. Shapiro, U.S. patent 5,903,813 (11 May 1999).Google Scholar
  22. 22.
    G. Das, P&W Aircraft, West Palm Beach, private communication (February 2000).Google Scholar
  23. 23.
    F.H. Froes, JOM, 49 (2) (1997), p. 15.Google Scholar
  24. 24.
    C. Shira and F.H. Froes, JOM, 49 (5) (1997), p. 35.Google Scholar
  25. 25.
    F.H. Froes, JOM, 50 (9) (1998), p. 15.CrossRefGoogle Scholar
  26. 26.
    C. Shira and F.H. Froes, “Advanced Materials in Golf Clubs” (Paper presented at the Conf. on the Engineering of Sport, Sydney, Australia, 9–12 June, 2000).Google Scholar
  27. 27.
    F.H. Froes, JOM, 51 (6) (1999), p. 18.CrossRefGoogle Scholar
  28. 28.
    F.H. Froes, Light Metals Age, 55 (1&2) (1997), p. 40.Google Scholar

Copyright information

© TMS 2000

Authors and Affiliations

  • Vladimir Moxson
    • 1
  • O. N. Senkov
    • 2
  • F. H. Froes
    • 2
  1. 1.ADMAUSA
  2. 2.the Institute for Materials and Advanced ProcessesUniversity of IdahoUSA

Personalised recommendations