Bio tribune magazine

, Volume 40, Issue 1, pp 13–18 | Cite as

Spectrométrie de masse MALDI-TOF. Intérêt dans un laboratoire hospitalier de bactériologie

  • E. Bessède
  • M. Angla-Gre
  • Y. Delagarde
  • S. Sep Hieng
  • A. Ménard
  • F. Mégraud
Mise au Point

Résumé

La spectrométrie de masse MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-Of-Flight) se positionne comme l’outil essentiel d’un futur proche pour l’identification bactérienne. Il était donc indispensable d’évaluer ses performances réelles en routine dans un laboratoire de bactériologie.

Une étude prospective a été menée d’avril à mai 2009 au laboratoire de bactériologie du CHU Pellegrin à Bordeaux. Les bactéries isolées de prélèvements cliniques étaient identifiées par les méthodes phénotypiques conventionnelles: automate Phoenix® (Becton Dickinson) ou galeries API® (bioMérieux) et en parallèle par spectrométrie de masse MALDI-TOF à l’aide de l’Ultraflex® III TOF/TOF associé à la base de données Biotyper® 2.0 (Bruker Daltonics). En cas de discordance entre les identifications du genre bactérien, un séquençage du gène codant pour l’ARNr 16S et/ou du gène rpoB était réalisé.

Sur un total de 1 013 bactéries, 837 (82,6 %) ont été correctement identifiées au niveau de l’espèce sans extraction préalable et 986 (97,3 %) après extraction par spectrométrie de masse MALDI-TOF, contre 945 (93,2 %) par les méthodes phénotypiques. Au final, l’étape d’extraction a été nécessaire dans 15 % des cas. Ces résultats étaient encore meilleurs en considérant l’identification au niveau du genre, atteignant presque 99 % d’identifications correctes avec la spectrométrie de masse MALDI-TOF et 98 % avec les méthodes phénotypiques. Les performances de la spectrométrie de masse MALDI-TOF sont excellentes et en font un outil très attractif et précieux vu son efficacité et sa rapidité à identifier les bactéries.

Mots-clés

Spectrométrie de masse génétique phénotype 

Interest of MALDI-TOF in a hospital laboratory of bacteriology

Abstract

Context

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) is positioned at the forefront of bacterial identification in the future. Its performance needed to be evaluated in a routine bacteriology laboratory to determine its true benefits.

Material and methods

A prospective study was carried out in the bacteriology laboratory of the Pellegrin University Hospital in Bordeaux, France, from April to May 2009. Bacterial isolates from clinical samples were identified by conventional phenotypic bacteriological methods (Phoenix Becton Dickinson or Api strips bioMérieux) and in parallel with a mass spectrometer (Ultraflex III TOF/TOF and the Biotyper database from Bruker Daltonics). In case of discrepancy between these results at the genus level, a 16S rRNA and / or rpoB gene sequencing was performed.

Results

Of the 1013 bacteria tested, 837 (82.6%) were correctly identified at the species level by MALDI-TOF mass spectrometry without extraction and 986 (97.3%) were correctly identified at the species level by MALDI-TOF mass spectrometry, versus 945 (93.2%) by phenotypic methods. In fact, the extraction step was necessary for only 15% of the isolates. These results were even better when considering the genus, reaching almost 99% with MALDI-TOF mass spectrometry and 98% with phenotypic methods.

Conclusion

The performance of MALDI-TOF mass spectrometry is very attractive considering its efficiency and rapidity, and the technique constitutes a precious tool for bacteriological identification in a routine laboratory.

Keywords

Mass spectrometry genetics phenotype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Bessède E, Angla-Gre M, Delagarde Y, et al. (2011) Matrix-assisted laser-desorption/ionization biotyper: experience in the routine of a University hospital. Clin Microbiol Infect 17: 533–538PubMedCrossRefGoogle Scholar
  2. 2.
    Wieten G, Haverkamp J, Meuzelaar HL, et al. (1981) Pyrolysis mass spectrometry: a new method to differentiate between the mycobacteria of the ‘tuberculosis complex’ and other mycobacteria. J Gen Microbiol 122: 109–118PubMedGoogle Scholar
  3. 3.
    Wang Z, Dunlop K, Long SR, Li L (2002) Mass spectrometric methods for generation of protein mass database used for bacterial identification. Anal Chem 74: 3174–3182PubMedCrossRefGoogle Scholar
  4. 4.
    Carbonnelle E, Beretti JL, Cottyn S, et al. (2007) Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrixassisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2007. 45: 2156–2161PubMedCrossRefGoogle Scholar
  5. 5.
    Seng P, Drancourt M, Gouriet F, et al. (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49: 543–551PubMedCrossRefGoogle Scholar
  6. 6.
    Park NY, Chung CY, McLaren AJ, et al. (1995) Polymerase chain reaction for identification of human and porcine spirochaetes recovered from cases of intestinal spirochaetosis. FEMS Microbiol Lett 125: 225–229PubMedCrossRefGoogle Scholar
  7. 7.
    Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62: 625–630PubMedGoogle Scholar
  8. 8.
    Ménard A, Degrange S, Peuchant O, et al. (2009) Tsukamurella tyrosinosolvens—an unusual case report of bacteremic pneumonia after lung transplantation. Ann Clin Microbiol Antimicrob 8: 30PubMedCrossRefGoogle Scholar
  9. 9.
    Drancourt M, Raoult D (2002) rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40: 1333–1338PubMedCrossRefGoogle Scholar
  10. 10.
    Devulder G, Perrière G, Baty F, Flandrois JP (2003) BIBI, a bioinformatics bacterial identification tool. J Clin Microbiol 41: 1785–1787PubMedCrossRefGoogle Scholar
  11. 11.
    Brigante G, Luzzaro F, Bettaccini A, et al. (2006) Use of the Phoenix automated system for identification of Streptococcus and Enterococcus spp. J Clin Microbiol 44: 3263–3267PubMedCrossRefGoogle Scholar
  12. 12.
    Carroll KC, Borek AP, Burger C, et al. (2006) Evaluation of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of staphylococci and enterococci. J Clin Microbiol 44:2072–2077.PubMedCrossRefGoogle Scholar
  13. 13.
    Carroll KC, Glanz BD, Borek AP, et al. (2006) Evaluation of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of Enterobacteriaceae. J Clin Microbiol 44: 3506–3509PubMedCrossRefGoogle Scholar
  14. 14.
    Nagy E, Maier T, Urban E, et al. (2009) Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 15: 796–802PubMedCrossRefGoogle Scholar
  15. 15.
    Lay JO Jr. (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20: 172–194PubMedCrossRefGoogle Scholar
  16. 16.
    Stîngu CS, Rodloff AC, Jentsch H, et al. (2008) Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDITOF-MS. Oral Microbiol Immunol 23: 372–376PubMedCrossRefGoogle Scholar
  17. 17.
    Hsieh SY, Tseng CL, Lee YS, et al. (2008) Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS. Mol Cell Proteomics 7: 448–456PubMedGoogle Scholar
  18. 18.
    Bernardo K, Pakulat N, Macht M et al. (2002) Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2: 747–753PubMedCrossRefGoogle Scholar
  19. 19.
    Camara JE, Hays FA (2007) Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 389: 1633–1638PubMedCrossRefGoogle Scholar
  20. 20.
    Edwards-Jones V, Claydon MA, Evason DJ, et al. (2000) Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol 49: 295–300PubMedGoogle Scholar

Copyright information

© Springer Verlag France 2011

Authors and Affiliations

  • E. Bessède
    • 1
    • 2
    • 3
  • M. Angla-Gre
    • 1
  • Y. Delagarde
    • 1
  • S. Sep Hieng
    • 1
  • A. Ménard
    • 1
    • 2
    • 3
  • F. Mégraud
    • 1
    • 2
    • 3
  1. 1.C.H.U. de Bordeaux, hôpital Pellegrinlaboratoire de bactériologieBordeaux cedexFrance
  2. 2.laboratoire de bactériologieUniversité de BordeauxBordeauxFrance
  3. 3.INSERM U853BordeauxFrance

Personalised recommendations