Bio tribune magazine

, Volume 39, Issue 1, pp 19–28 | Cite as

Avantages et inconvénients du dosage de la 25-hydroxyvitamine D par chromatographie liquide couplée à la spectrométrie de masse en tandem (CL-SM/SM)

Mise au Point
  • 48 Downloads

Résumé

Avec l’explosion ces dernières années de la demande, a des fins cliniques ou de recherche, de dosage de la 25-hydroxyvitamine D, le choix de la meilleure méthode pour un laboratoire de biologie médicale peut être particulièrement difficile avec le nombre important de méthodes actuellement disponibles. Les immunodosages offrent le meilleur compromis de simplicité, débit d’échantillons, coût et qualité de résultat, mais souffrent de limitations qui font de la CL-SM/SM la technique de référence, bien que plus coûteuse, pour sa flexibilité, sa sensibilité et sa spécificité.

Mots clés

CL-SM/SM Vitamine D 25-OHD avantages inconvé — nients 

Strengths and limitations of the measurement of 25-hydroxyvitamin D by liquid chromatography — tandem mass spectrometry (LC-MS/MS)

Abstract

Given the dramatic increase, over the last few years, of both routine clinical and research use of the measurement of 25-hydroxyvitamin D, the choice of which is the best method, for an individual clinical laboratory, might be challenging especially given the range of methodologies actually available. Immunoassays offer the best compromise of convenience, high throughput, cost and good result, but also present notable limits that make the LC-MS/MS the gold standard due to its flexibility, sensitivity and specificity, although more expensive.

Keywords

LC-MS/MS Vitamin D 25-OHD strengths limitations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Heaney RP, Horst RL, Cullen DM, et al. (2009) Vitamin D3 distribution and status in the body. J Am Coll Nutr 28: 252–256PubMedGoogle Scholar
  2. 2.
    Chen TC, Chimeh F, Lu Z, et al. (2007) Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys 460: 213–217PubMedCrossRefGoogle Scholar
  3. 3.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357: 266–281PubMedCrossRefGoogle Scholar
  4. 4.
    Seamans KM, Cashman KD (2009) Existing and potentially novel functional markers of vitamin D status: a systematic review. Am J Clin Nutr 89: 1997S–2008SPubMedCrossRefGoogle Scholar
  5. 5.
    Zerwekh JE (2008) Blood biomarkers of vitamin D status. Am J Clin Nutr 87: 1087S–1091SPubMedGoogle Scholar
  6. 6.
    Hollis BW, Horst RL (2007) The assessment of circulating 25(OH)D and 1,25(OH)2D: where we are and where we are going. J Steroid Biochem Mol Biol 103: 473–476PubMedCrossRefGoogle Scholar
  7. 7.
    Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22: 477–501PubMedCrossRefGoogle Scholar
  8. 8.
    Ooms ME, Lips P, Roos JC, et al. (1995) Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. J Bone Miner Res 10: 1177–1184PubMedCrossRefGoogle Scholar
  9. 9.
    Wang S (2009) Epidemiology of vitamin D in health and disease. Nutr Res Rev 22: 188–203PubMedCrossRefGoogle Scholar
  10. 10.
    Kulie T, Groff A, Redmer J, et al. (2009) Vitamin D: an evidence-based review. J Am Board Fam Med 22: 698–706PubMedCrossRefGoogle Scholar
  11. 11.
    Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84: 18–28PubMedGoogle Scholar
  12. 12.
    Hollis BW (2000) Comparison of commercially available (125)I-based RIA methods for the determination of circulating 25-hydroxyvitamin D. Clin Chem 46: 1657–1661PubMedGoogle Scholar
  13. 13.
    Glendenning P, Taranto M, Noble JM, et al. (2006) Current assays overestimate 25-hydroxyvitamin D3 and underestimate 25-hydroxyvitamin D2 compared with HPLC: need for assay-specific decision limits and metabolite-specific assays. Ann Clin Biochem 43: 23–30PubMedCrossRefGoogle Scholar
  14. 14.
    Ersfeld DL, Rao DS, Body JJ, et al. (2004) Analytical and clinical validation of the 25 OH vitamin D assay for the LIAISON automated analyzer. Clin Biochem 37: 867–874PubMedCrossRefGoogle Scholar
  15. 15.
    Turpeinen U, Hohenthal U, Stenman UH (2003) Determination of 25-hydroxyvitamin D in serum by HPLC and immunoassay. Clin Chem 49: 1521–1524PubMedCrossRefGoogle Scholar
  16. 16.
    Roth HJ, Schmidt-Gayk H, Weber H, et al. (2008) Accuracy and clinical implications of seven 25-hydroxyvitamin D methods compared with liquid chromatography-tandem mass spectrometry as a reference. Ann Clin Biochem 45: 153–159PubMedCrossRefGoogle Scholar
  17. 17.
    Hypponen E, Turner S, Cumberland P, et al. (2007) Serum 25-hydroxyvitamin D measurement in a large population survey with statistical harmonization of assay variation to an international standard. J Clin Endocrinol Metab 92: 4615–4622PubMedCrossRefGoogle Scholar
  18. 18.
    Souberbielle JC, Fayol V, Sault C, et al. (2005) Assay-specific decision limits for two new automated parathyroid hormone and 25-hydroxyvitamin D assays. Clin Chem 51: 395–400PubMedCrossRefGoogle Scholar
  19. 19.
    Yeung B, Vouros P, Reddy GS (1993) Characterization of vitamin D3 metabolites using continuous-flow fast atom bombardment tandem mass spectrometry and high-performance liquid chromatography. J Chromatogr 645: 115–123PubMedCrossRefGoogle Scholar
  20. 20.
    Vreeken RJ, Honing M, van Baar BL et al. (1993) On-line post-column Diels-Alder derivatization for the determination of vitamin D3 and its metabolites by liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom 22: 621–632PubMedCrossRefGoogle Scholar
  21. 21.
    Higashi T, Awada D, Shimada K (2001) Simultaneous determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma by liquid chromatography-tandem mass spectrometry employing derivatization with a Cookson-type reagent. Biol Pharm Bull 24: 738–743PubMedCrossRefGoogle Scholar
  22. 22.
    Chen H, McCoy LF, Schleicher RL, et al. (2008) Measurement of 25-hydroxyvitamin D3 (25OHD3) and 25-hydroxyvitamin D2 (25OHD2) in human serum using liquid chromatography-tandem mass spectrometry and its comparison to a radioimmunoassay method. Clin Chim Acta 391: 6–12PubMedCrossRefGoogle Scholar
  23. 23.
    Vogeser M, Kyriatsoulis A, Huber E, et al. (2004) Candidate reference method for the quantification of circulating 25-hydroxyvitamin D3 by liquid chromatography-tandem mass spectrometry. Clin Chem 50: 1415–1417PubMedCrossRefGoogle Scholar
  24. 24.
    Knox S, Harris J, Calton L, et al. (2009) A simple automated solid-phase extraction procedure for measurement of 25-hydroxyvitamin D3 and D2 by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem 46: 226–230PubMedCrossRefGoogle Scholar
  25. 25.
    Tsugawa N, Suhara Y, Kamao M, et al. (2005) Determination of 5-hydroxyvitamin D in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Anal Chem 77: 3001–3007PubMedCrossRefGoogle Scholar
  26. 26.
    Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin Chem 51: 1683–1690PubMedCrossRefGoogle Scholar
  27. 27.
    Saenger AK, Laha TJ, Bremner DE, et al. (2006) Quantification of serum 25-hydroxyvitamin D(2) and D(3) using HPLC-tandem mass spectrometry and examination of reference intervals for diagnosis of vitamin D deficiency. Am J Clin Pathol 125: 914–920PubMedCrossRefGoogle Scholar
  28. 28.
    Bunch DR, Miller AY, Wang S (2009) Development and validation of a liquid chromatography-tandem mass spectrometry assay for serum 25-hydroxyvitamin D2/D3 using a turbulent flow online extraction technology. Clin Chem Lab Med 47: 1565–1572PubMedCrossRefGoogle Scholar
  29. 29.
    Carter GD, Carter R, Jones J, et al. (2004) How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clin Chem 50: 2195–2197PubMedCrossRefGoogle Scholar
  30. 30.
    Binkley N, Krueger D, Cowgill CS, et al. (2004) Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization. J Clin Endocrinol Metab 89: 3152–3157PubMedCrossRefGoogle Scholar
  31. 31.
    Carter GD, Jones JC (2009) Use of a common standard improves the performance of liquid chromatography-tandem mass spectrometry methods for serum 25-hydroxyvitamin-D. Ann Clin Biochem 46: 79–81PubMedCrossRefGoogle Scholar
  32. 32.
    Fraser WD (2009) Standardization of vitamin D assays: art or science? Ann Clin Biochem 46: 3–4PubMedCrossRefGoogle Scholar
  33. 33.
    Blocki J, Fenske J, Bobba G, et al. (2009) Measurement of 25OHD spiked serum samples have no clinical relevance. In Proceedings of the 14th Workshop on Vitamin DGoogle Scholar
  34. 34.
    Horst R (2009) Exogenous vs. endogenous recovery of 25-hydroxyvitamin D2 and D3 in human samples using HPLC and the Diasorin Liaison Total D assay. In Proceedings of the 14th Workshop on Vitamin DGoogle Scholar
  35. 35.
    Carter GD, Jones JC, Berry JL (2007) The anomalous behaviour of exogenous 25-hydroxyvitamin D in competitive binding assays. J Steroid Biochem Mol Biol 103: 480–482PubMedCrossRefGoogle Scholar
  36. 36.
    Binkley N (2006) Vitamin D: clinical measurement and use. J Musculoskelet Neuronal Interact 6: 338–340PubMedGoogle Scholar
  37. 37.
    Hollis BW (2008) Assessment of vitamin D status and definition of a normal circulating range of 25-hydroxyvitamin D. Curr Opin Endocrinol Diabetes Obes 15: 489–494PubMedCrossRefGoogle Scholar
  38. 38.
    Costelloe SJ, Woolman E, Rainbow S, et al. (2009) Is high-throughput measurement of 25-hydroxyvitamin D3 without 25-hydroxyvitamin D2 appropriate for routine clinical use? Ann Clin Biochem 46: 86–87; author reply 87–8PubMedCrossRefGoogle Scholar
  39. 39.
    Vieth R (2000) Problems with direct 25-hydroxyvitamin D assays, and the target amount of vitamin D nutrition desirable for patients with osteoporosis. Osteoporos Int 11: 635–636PubMedCrossRefGoogle Scholar
  40. 40.
    Aronov PA, Hall LM, Dettmer K, et al. (2008) Metabolic profiling of major vitamin D metabolites using Diels-Alder derivatization and ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 391: 1917–1930PubMedCrossRefGoogle Scholar
  41. 41.
    Priego Capote F, Jimenez JR, Granados JM, et al. (2007) Identification and determination of fat-soluble vitamins and metabolites in human serum by liquid chromatography/triple quadrupole mass spectrometry with multiple reaction monitoring. Rapid Commun Mass Spectrom 21: 1745–1754PubMedCrossRefGoogle Scholar
  42. 42.
    Beastall G, Rainbow S (2008) Vitamin D reinvented: implications for clinical chemistry. Clin Chem 54: 630–632PubMedCrossRefGoogle Scholar
  43. 43.
    Elder PA, Lewis JG, King RI, et al. (2009) An anomalous result from gel tubes for vitamin D. Clin Chim Acta 410: 95PubMedCrossRefGoogle Scholar
  44. 44.
    Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49: 1041–1044PubMedCrossRefGoogle Scholar
  45. 45.
    Kamao M, Tsugawa N, Suhara Y, et al. (2007) Quantification of fatsoluble vitamins in human breast milk by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 859: 192–200PubMedCrossRefGoogle Scholar
  46. 46.
    Higashi T, Shibayama Y, Fuji M, et al. (2008) Liquid chromatographytandem mass spectrometric method for the determination of salivary 25-hydroxyvitamin D3: a noninvasive tool for the assessment of vitamin D status. Anal Bioanal Chem 391: 229–238PubMedCrossRefGoogle Scholar
  47. 47.
    Holmoy T, Moen SM, Gundersen TA, et al. (2009) 25-hydroxyvitamin D in cerebrospinal fluid during relapse and remission of multiple sclerosis. Mult Scler 15: 1280–1285PubMedCrossRefGoogle Scholar
  48. 48.
    Newman MS, Brandon TR, Groves MN, et al. (2009) A liquid chromatography/tandem mass spectrometry method for determination of 25-hydroxy vitamin d(2) and 25-hydroxy vitamin d(3) in dried blood spots: a potential adjunct to diabetes and cardiometabolic risk screening. J Diabetes Sci Technol 3: 156–162PubMedGoogle Scholar
  49. 49.
    Wootton AM (2005) Improving the measurement of 25-hydroxyvitamin D. Clin Biochem Rev 26: 33–36PubMedGoogle Scholar

Copyright information

© Springer Verlag France 2011

Authors and Affiliations

  1. 1.Service de BiochimieHôpital Saint-LouisParisFrance
  2. 2.Technicienne de laboratoire, Service de BiochimieHôpital Saint-LouisParisFrance
  3. 3.Praticien Hospitalier, Service de BiochimieHôpital Saint-LouisParisFrance

Personalised recommendations