Advertisement

Nonintrusive Stochastic Finite Elements for Crashworthiness with VPS/Pamcrash

  • M. Rocas
  • A. García-GonzálezEmail author
  • X. Larráyoz
  • P. Díez
Original Paper
  • 22 Downloads

Abstract

Crashworthiness analysis remains an important concern for the design of safety structures. In this context, uncertainties play an essential role in the response of a crash problem with non linear behavior. With this statement at hand, in this work it is presented a review of uncertainty quantification (UQ) techniques, with intrusive and non-intrusive approaches in stochastic finite element methods for crashworthiness. The well-known deterministic finite element solver VPS/Pamcrash is used to illustrate the currently available methods, developing a comparative analysis of these techniques in crashworthiness UQ. Finally, relevant non-intrusive methods are applied to analyze the behavior of a specific quantity of interest in a dynamic crash model.

Notes

Acknowledgements

This work is partially funded by Generalitat de Catalunya (Grant Number 1278 SGR 2017-2019 and Pla de Doctorats Industrials 2017 DI 058) and Ministerio de Economía y Empresa and Ministerio de Ciencia, Innovación y Universidades (Grant Number DPI2017-85139-C2-2-R).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Al-Momani E, Rawabdeh I (2008) An application of finite element method and design of experiments in the optimization of sheet metal blanking process. JJMIE 2(1):53–63Google Scholar
  2. 2.
    Arregui-Mena JD, Margetts L, Mummery PM (2016) Practical application of the stochastic finite element method. Arch Comput Methods Eng 23(1):171–190MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Askey R, Wilson JA (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, vol 319. American Mathematical SocGoogle Scholar
  4. 4.
    Aslett LJ, Nagapetyan T, Vollmer SJ (2017) Multilevel Monte Carlo for reliability theory. Reliab Eng Syst Saf 165:188–196CrossRefGoogle Scholar
  5. 5.
    Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS, vol 34. Oxford University PressGoogle Scholar
  6. 6.
    Barea R, Novoa S, Herrera F, Achiaga B, Candela N (2018) A geometrical robust design using the taguchi method: application to a fatigue analysis of a right angle bracket. Dyna 85(205):37–46CrossRefGoogle Scholar
  7. 7.
    Barth A, Schwab C, Zollinger N (2011) Multi-level monte carlo finite element method for elliptic pdes with stochastic coefficients. Numerische Mathematik 119(1):123–161MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bergman L, Shinozuka M, Bucher C, Sobczyk K, Dasgupta G, Spanos P, Deodatis G, Spencer B, Ghanem R, Sutoh A et al (1997) A state-of-the-art report on computational stochastic mechanics. Probab Eng Mech 12(4):197–321CrossRefGoogle Scholar
  9. 9.
    Berveiller M, Sudret B, Lemaire M (2004) Presentation of two methods for computing the response coefficients in stochastic finite element analysis. In: Proceedings of 9th ASCE specialty conference on probabilistic mechanics and structural reliability, Albuquerque, USAGoogle Scholar
  10. 10.
    Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite element: a non intrusive approach by regression. Eur J Comput Mech/Revue Européenne de Mécanique Numérique 15(1–3):81–92zbMATHGoogle Scholar
  11. 11.
    Boyd JP (2001) Chebyshev and fourier spectral methods. Courier CorporationGoogle Scholar
  12. 12.
    Datta S, Bandyopadhyay A, Pal PK (2008) Grey-based taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. Int J Adv Manuf Technol 39(11–12):1136–1143CrossRefGoogle Scholar
  13. 13.
    Doostan A, Ghanem RG, Red-Horse J (2007) Stochastic model reduction for chaos representations. Comput Methods Appl Mech Eng 196(37–40):3951–3966MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Eiermann M, Ernst OG, Ullmann E (2007) Computational aspects of the stochastic finite element method. Comput Vis Sci 10(1):3–15MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Eldred M (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 17th AIAA/ASME/AHS adaptive structures conference 11th AIAA No, p. 2274Google Scholar
  16. 16.
    Eldred M, Webster C, Constantine P (2008) Evaluation of non-intrusive approaches for wiener-askey generalized polynomial chaos. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA non-deterministic approaches conference, 9th AIAA Gossamer spacecraft forum, 4th AIAA multidisciplinary design optimization specialists conference, p 1892Google Scholar
  17. 17.
    Fei NC, Mehat NM, Kamaruddin S (2013) Practical applications of Taguchi method for optimization of processing parameters for plastic injection moulding: a retrospective review. ISRN Ind Eng 2013:462174.  https://doi.org/10.1155/2013/462174 CrossRefGoogle Scholar
  18. 18.
    Feinberg J, Langtangen HP (2015) Chaospy: an open source tool for designing methods of uncertainty quantification. J Comput Sci 11:46–57MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fishman G (2013) Monte Carlo: concepts, algorithms, and applications. Springer Science & Business MediaGoogle Scholar
  20. 20.
    Florentin E, Díez P (2012) Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems. Comput Methods Appl Mech Eng 225–228:116–127MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Fratila D, Caizar C (2011) Application of taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3. J Clean Prod 19(6–7):640–645CrossRefGoogle Scholar
  22. 22.
    Ghanem RG, Kruger RM (1996) Numerical solution of spectral stochastic finite element systems. Comput Methods Appl Mech Eng 129(3):289–303zbMATHCrossRefGoogle Scholar
  23. 23.
    Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Corporation, North ChelmsfordzbMATHGoogle Scholar
  24. 24.
    Giles MB (2008) Multilevel monte carlo path simulation. Oper Res 56(3):607–617MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Gilli L, Lathouwers D, Kloosterman J, Van der Hagen T, Koning A, Rochman D (2013) Uncertainty quantification for criticality problems using non-intrusive and adaptive polynomial chaos techniques. Ann Nucl Energy 56:71–80CrossRefGoogle Scholar
  26. 26.
    Gopalsamy BM, Mondal B, Ghosh S (2009) Taguchi method and ANOVA: an approach for process parameters optimization ofhard machining while machining hardened steel. J Sci Ind Res 68(8):686–695Google Scholar
  27. 27.
    Graham IG, Parkinson MJ, Scheichl R (2018) Modern Monte Carlo variants for uncertainty quantification in neutron transport. In: Contemporary computational mathematics-a celebration of the 80th birthday of Ian Sloan. Springer, pp 455–481Google Scholar
  28. 28.
    Grigoriu M (2006) Evaluation of Karhunen–Loève, spectral, and sampling representations for stochastic processes. J Eng Mech 132(2):179–189CrossRefGoogle Scholar
  29. 29.
    Hadigol M, Doostan A (2018) Least squares polynomial chaos expansion: a review of sampling strategies. Comput Methods Appl Mech Eng 332:382–407MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hammersley JM (1960) Monte carlo methods for solving multivariable problems. Ann N Y Acad Sci 86(3):844–874MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Hosder S, Walters R, Balch M (2007) Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1939Google Scholar
  32. 32.
    Hosder S, Walters R, Perez R (2014) A non-intrusive polynomial Chaos method for uncertainty propagation in CFD simulations.  https://doi.org/10.2514/6.2006-891
  33. 33.
    Jäckel P (2005) A note on multivariate Gauss–Hermite quadrature. ABN-Amro. Re, LondonGoogle Scholar
  34. 34.
    Kaintura A, Dhaene T, Spina D (2018) Review of polynomial chaos-based methods for uncertainty quantification in modern integrated circuits. Electronics 7(3):30CrossRefGoogle Scholar
  35. 35.
    Kleiber M, Hien TD (1992) The stochastic finite element method: basic perturbation technique and computer implementation. Wiley, ChichesterzbMATHGoogle Scholar
  36. 36.
    Le Maıtre OP, Reagan MT, Najm HN, Ghanem RG, Knio OM (2002) A stochastic projection method for fluid flow: II. Random process. J Comput Phys 181(1):9–44MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Lin G, Iyer K, Hu S, Cai W, Marin S (2005) A computational design-of-experiments study of hemming processes for automotive aluminium alloys. Proc Inst Mech Eng Part B J Eng Manuf 219(10):711–722CrossRefGoogle Scholar
  38. 38.
    Liu WK, Belytschko T, Mani A (1986) Probabilistic finite elements for nonlinear structural dynamics. Comput Methods Appl Mech Eng 56(1):61–81zbMATHCrossRefGoogle Scholar
  39. 39.
    Liu WK, Belytschko T, Mani A (1986) Random field finite elements. Int J Numer Methods Eng 23(10):1831–1845MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Liu Z, Liu Z, Peng Y (2017) Dimension reduction of Karhunen–Loeve expansion for simulation of stochastic processes. J Sound Vib.  https://doi.org/10.1016/j.jsv.2017.07.016 CrossRefGoogle Scholar
  41. 41.
    Mathelin L, Hussaini MY, Zang TA (2005) Stochastic approaches to uncertainty quantification in cfd simulations. Numer Algorithms 38(1–3):209–236MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194(12–16):1295–1331MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Niederreiter H (1978) Quasi-Monte Carlo methods and pseudo-random numbers. Bull Am Math Soc 84(6):957–1041MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3):251–285MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    PAM-CRASH THEORY NOTES Manual V2000 (2000) Pam System International, FranceGoogle Scholar
  46. 46.
    Phoon K, Huang H, Quek S (2005) Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion. Probab Eng Mech 20(2):188–198CrossRefGoogle Scholar
  47. 47.
    Rifkin RM, Lippert RA (2007) Notes on regularized least squares. Technical Report, Massachusetts Institute of Technology, Computer Science and Artificial Intelligence LaboratoryGoogle Scholar
  48. 48.
    Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. Wiley, New YorkGoogle Scholar
  49. 49.
    Schevenels M, Lombaert G, Degrande G (2004) Application of the stochastic finite element method for gaussian and non-Gaussian systems. In: ISMA2004 international conference on noise and vibration engineering. Katholieke Univ Leuven, Dept Werktuigkunde, pp 3299–3314Google Scholar
  50. 50.
    Sepahvand K (2016) Spectral stochastic finite element vibration analysis of fiber-reinforced composites with random fiber orientation. Compos Struct 145:119–128CrossRefGoogle Scholar
  51. 51.
    Shinozuka M, Deodatis G (1991) Simulation of stochastic processes by spectral representation. Appl Mech Rev 44(4):191–204MathSciNetCrossRefGoogle Scholar
  52. 52.
    Sraj I, Mandli KT, Knio OM, Dawson CN, Hoteit I (2017) Quantifying uncertainties in fault slip distribution during the tōhoku tsunami using polynomial chaos. Ocean Dyn 67(12):1535–1551CrossRefGoogle Scholar
  53. 53.
    Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051zbMATHCrossRefGoogle Scholar
  54. 54.
    Stefanou G, Papadrakakis M (2007) Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields. Comput Methods Appl Mech Eng 196(21–24):2465–2477zbMATHCrossRefGoogle Scholar
  55. 55.
    Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979CrossRefGoogle Scholar
  56. 56.
    Sudret B (2014) Polynomial chaos expansions and stochastic finite element methods. CRC Press, Boca Raton, pp 265–300Google Scholar
  57. 57.
    Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability: a state-of-the-art report. Department of Civil and Environmental Engineering, University of California, OaklandGoogle Scholar
  58. 58.
    Sudret B, Mai CV (2015) Computing derivative-based global sensitivity measures using polynomial chaos expansions. Reliab Eng Syst Saf 134:241–250CrossRefGoogle Scholar
  59. 59.
    Taguchi G, Konishi S (1987) Taguchi methods: orthogonal arrays and linear graphs; tools for quality engineering. ASI pressGoogle Scholar
  60. 60.
    Tolga Taner M, Sezen B (2007) Taguchi’s experimental design method on improvement of medical image quality. Leadersh Health Serv 20(1):42–51CrossRefGoogle Scholar
  61. 61.
    Tsui KL (1992) An overview of taguchi method and newly developed statistical methods for robust design. IIE Trans 24(5):44–57CrossRefGoogle Scholar
  62. 62.
    Wong TT, Luk WS, Heng PA (1997) Sampling with Hammersley and Halton points. J Graph Tools 2(2):9–24CrossRefGoogle Scholar
  63. 63.
    Xiu D (2009) Fast numerical methods for stochastic computations: a review. Commun Comput Phys 5(2–4):242–272MathSciNetzbMATHGoogle Scholar
  64. 64.
    Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, PrincetonzbMATHCrossRefGoogle Scholar
  65. 65.
    Xiu D, Karniadakis GE (2002) The wiener-askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Yang Z, Su X, Chen J, Liu G (2009) Monte carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials. Int J Solids Struct 46(17):3222–3234zbMATHCrossRefGoogle Scholar
  67. 67.
    Zang C, Friswell M, Mottershead J (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83(4–5):315–326CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2020

Authors and Affiliations

  • M. Rocas
    • 1
    • 2
  • A. García-González
    • 1
    • 3
    Email author
  • X. Larráyoz
    • 2
  • P. Díez
    • 1
    • 3
  1. 1.Laboratori de Càlcul Numèric, E.T.S. de Ingeniería de CaminosUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.SEATMartorellSpain
  3. 3.International Centre for Numerical Methods in Engineering, CIMNEBarcelonaSpain

Personalised recommendations