Advertisement

Quasi-Regression Monte-Carlo Scheme for Semi-Linear PDEs and BSDEs with Large Scale Parallelization on GPUs

  • Emmanuel Gobet
  • José Germán López-SalasEmail author
  • Carlos Vázquez
Original Paper
  • 44 Downloads

Abstract

In this article we design a novel quasi-regression Monte Carlo algorithm in order to approximate the solution of discrete time backward stochastic differential equations, and we analyze the convergence of the proposed method. The algorithm also approximates the solution to the related semi-linear parabolic partial differential equation obtained through the well known Feynman–Kac representation. For the sake of enriching the algorithm with high order convergence a weighted approximation of the solution is computed and appropriate conditions on the parameters of the method are inferred. With the challenge of tackling problems in high dimensions we propose suitable projections of the solution and efficient parallelizations of the algorithm taking advantage of powerful many core processors such as graphics processing units.

Mathematics Subject Classification

49L20 62Jxx 65C30 93E24 68W10 

Notes

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bally V (1997) Approximation scheme for solutions of BSDE. In: Backward stochastic differential equations (Paris, 1995–1996), Pitman research notes in mmathematics series, vol 364, pp 177–191. Longman, HarlowGoogle Scholar
  2. 2.
    Bally V, Pagès G (2003) A quantization algorithm for solving multi-dimensional optimal stopping problems. Bernoulli 9(6):1003–1049MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barles G, Buckdahn R, Pardoux E (1997) Backward stochastic differential equations and integral-partial differential equations. Stoch Stoch Rep 60(1–2):57–83MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bellmann R (1961) Adaptive control processes: a guided tour. Princeton University Press, PrincetonCrossRefGoogle Scholar
  5. 5.
    Bender C, Denk R (2007) A forward scheme for backward SDEs. Stoch Process Appl 117(12):1793–1823MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bender C, Moseler T (2010) Importance sampling for backward SDEs. Stoch Anal Appl 28(2):226–253MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bergman Y (1995) Option pricing with differential interest rates. Rev Financ Stud 8(2):475–500CrossRefGoogle Scholar
  8. 8.
    Bismut JM (1973) Conjugate convex functions in optimal stochastic control. J Math Anal Appl 44(2):384–404MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bouchard B, Tan X, Warin X, Zou Y (2017) Numerical approximation of BSDEs using local polynomial drivers and branching processes. Monte Carlo Methods Appl 23(4):241–263MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bouchard B, Touzi N (2004) Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch Process Appl 111:175–206MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods fundamentals in single domains. Springer, BerlinzbMATHGoogle Scholar
  12. 12.
    Chan-Wai-Nam Q, Mikael J, Warin X (2019) Machine learning for semi linear PDEs. J Sci Comput.  https://doi.org/10.1007/s10915-019-00908-3 Google Scholar
  13. 13.
    Cheridito P, Soner HM, Touzi N, Victoir N (2007) Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun Pure Appl Math 60(7):1081–1110MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chevance D (1997) Numerical methods for backward stochastic differential equations. In: Moffatt HK (ed) Numerical methods in finance. Cambridge University Press, Cambridge, pp 232–244CrossRefGoogle Scholar
  15. 15.
    Constantine GM, Savits TH (1996) A multivariate Faa di Bruno formula with applications. Trans Am Math Soc 348(2):503–520MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Crepey S (2013) Financial modeling: a backward stochastic differential equations perspective. Springer, BerlinCrossRefzbMATHGoogle Scholar
  17. 17.
    Cvitanic J, Ma J (1996) Hedging options for a large investor and Forward-Backward SDEs. Ann Appl Probab 6(2):370–398MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Delarue F, Menozzi S (2006) A forward backward algorithm for quasi-linear PDEs. Ann Appl Probab 16(1):140–184MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Delarue F, Menozzi S (2008) An interpolated stochastic algorithm for quasi-linear PDEs. Math Comput 77(261):125–158MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Delong L (2013) Backward stochastic differential equations with jumpsand their actuarial and financial applications: BSDEs with jumps. Springer, BerlinCrossRefzbMATHGoogle Scholar
  21. 21.
    Di Pietro D, Ern A (2011) Mathematical aspects of discontinuous Galerkin methods, vol 69. Springer, BerlinzbMATHGoogle Scholar
  22. 22.
    Duffie D, Epstein L (1992) Stochastic differential utility. Econometrica 60(2):353–394MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    E W, Han J, Jentzen A (2017) Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun Math Stat 5(4):349–380MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    El Karoui N, Hamadène S, Matoussi A (2008) Backward stochastic differential equations and applications. In: Carmona R (ed) Indifference pricing: theory and applications, vol 8. Springer, Berlin, pp 267–320Google Scholar
  25. 25.
    El Karoui N, Kapoudjian C, Pardoux E, Peng S, Quenez M (1997) Reflected solutions of BSDEs and related obstacle problems for PDE’s. Ann Probab 25(2):702–737MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    El Karoui N, Peng S, Quenez M (1997) Backward stochastic differential equations in finance. Math Financ 7(1):1–71MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    El Karoui N, Quenez M (1995) Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J Control Optim 33(1):29–66MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Funaro D (1992) Polynomial approximation of differential equations. Lecture notes in physics. Monographs 8. Springer, BerlinGoogle Scholar
  29. 29.
    Gavalas G (1968) Nonlinear differential equations of chemically reacting systems, vol 17. Springer tracts in natural philosophy. Springer, New YorkzbMATHGoogle Scholar
  30. 30.
    Geiss C, Geiss S, Gobet E (2012) Generalized fractional smoothness and \(L_p\)-variation of BSDEs with non-Lipschitz terminal condition. Stoch Process Appl 122(5):2078–2116CrossRefzbMATHGoogle Scholar
  31. 31.
    Gobet E (2016) Monte-Carlo methods and stochastic processes: from linear to non-linear. CRC Press, Boca RatonCrossRefzbMATHGoogle Scholar
  32. 32.
    Gobet E, Lemor JP, Warin X (2005) A regression-based Monte-Carlo method to solve backward stochastic differential equations. Ann Appl Probab 15(3):2172–2202MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gobet E, López-Salas JG, Turkedjiev P, Vázquez C (2016) Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs. SIAM J Sci Comput 38(6):C652–C677MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gobet E, Turkedjiev P (2016) Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression. Bernoulli 22(1):530–562MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gobet E, Turkedjiev P (2016) Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. Math Comput 85(299):1359–1391MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Gobet E, Turkedjiev P (2017) Adaptive importance sampling in least-squares Monte-Carlo algorithms for backward stochastic differential equations. Stoch Process Appl 127(4):1171–1203MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Henry D (1981) Geometric theory of semilinear parabolic equations, Lecture notes in mathematics, vol 840. Springer, BerlinGoogle Scholar
  38. 38.
    Henry-Labordere P, Tan X, Touzi N (2014) A numerical algorithm for a class of BSDEs via the branching process. Stoch Process Appl 124(2):1112–1140MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Jackman S (2009) Bayesian analysis for the social sciences. Wiley Series in probability and statistics. Wiley, SussexCrossRefzbMATHGoogle Scholar
  40. 40.
    Johnson W (2002) Combinatorics of higher derivatives of inverses. Am Math Mon 109(3):273–277CrossRefzbMATHGoogle Scholar
  41. 41.
    Johnson W (2002) The curious history of Faà di Bruno’s formula. Am Math Mon 109(3):217–234zbMATHGoogle Scholar
  42. 42.
    Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer, BerlinCrossRefzbMATHGoogle Scholar
  43. 43.
    Krommer AR, Ueberhuber CW (1998) Comput Integr. SIAM, PhiladelphiaCrossRefGoogle Scholar
  44. 44.
    L’Ecuyer P (1999) Good parameters and implementations for combined multiple recursive random number generators. Oper Res 47(1):159–164CrossRefzbMATHGoogle Scholar
  45. 45.
    Lee VW, Kim C, Chhugani J, Deisher M, Nguyen AD, Satish N, Smelyanskiy M, Chennupaty S, Hammarlund P, Singhal R, Dubey P (2010) Debunking the 100X GPU vs. CPU Myth: an evaluation of throughput computing on CPU and GPU. Newsl ACM SIGARCH Comput Archit News 10(38):451–460CrossRefGoogle Scholar
  46. 46.
    Lemor JP, Gobet E, Warin X (2006) Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12(5):889–916MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Ma J, Protter P, Yong J (1994) Solving forward-backward stochastic differential equations explicitly—a four step scheme. Probab Theory Relat Fields 98(3):339–359MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Menozzi S, Lemaire V (2010) On some non asymptotic bounds for the Euler scheme. Electron J Probab 15(53):1645–1681MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Nevai P (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J Approx Theory 48(1):3–167MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Nvidia Coorporation (2014) NVIDIA's Next Generation CUDA Compute Architecture: Kepler GK110/210. http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
  51. 51.
    OpenMP Architecture Review Board (2018) OpenMP Application Program Interface Version 5.0. https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
  52. 52.
    Pardoux E, Peng S (1990) Adapted solution of a backward stochastic differential equation. Syst Control Lett 14(1):55–61MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Pardoux E, Peng S (1992) Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Stochastic partial differential equations and their applications. Lecture notes in control and information sciences, vol 176, pp 200–217. SpringerGoogle Scholar
  54. 54.
    Pardoux E, Rascanu A (2014) Stochastic differential equations, backward SDEs, partial differential equations, vol 69. Stochastic modelling and applied probability. Springer, BerlinzbMATHGoogle Scholar
  55. 55.
    Peng S (2003) Nonlinear expectations, nonlinear evaluations and risk measures. In: Lectures presented in CIME EMS Bressanone, Italy, July 6 13, 2003Google Scholar
  56. 56.
    Pham H (2009) Continuous-time stochastic control and optimization with financial applications, vol 61. Series stochastic modeling and applied probability. Springer, BerlinzbMATHGoogle Scholar
  57. 57.
    Shigesada N, Kawasaki K (1997) Biological invasions : theory and practice. Oxford series in ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  58. 58.
    Smoller J (1994) Shock waves and reaction-diffusion equations, vol 258, 2nd edn. Fundamental principles of mathematical sciences. Springer, New YorkCrossRefzbMATHGoogle Scholar
  59. 59.
    Soner HM, Touzi N, Zhang J (2012) Well-posedness of second order backward SDEs. Probab Theory Relat Fields 153(1–2):149–190CrossRefzbMATHGoogle Scholar
  60. 60.
  61. 61.
  62. 62.
    Visintin A (1996) Models of phase transitions, vol 28. Progress in nonlinear differential equations and their applications. Birkhäuser Boston Inc., BostonCrossRefzbMATHGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2019

Authors and Affiliations

  1. 1.Centre de Mathématiques AppliquéesÉcole Polytechnique and CNRSPalaiseau CedexFrance
  2. 2.Department of Mathematics, Faculty of InformaticsUniversidade da CoruñaA CoruñaSpain

Personalised recommendations