State of the Art in the Optimisation of Wind Turbine Performance Using CFD

  • Alireza Shourangiz-HaghighiEmail author
  • Mohammad Amin Haghnegahdar
  • Lin Wang
  • Marco Mussetta
  • Athanasios Kolios
  • Martin Lander
Original Paper


Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained.


Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu TY, Tavner PJ, Feng Y, Qiu YN (2013) Review of recent offshore wind power developments in china. Wind Energy 16(5):786–803CrossRefGoogle Scholar
  2. 2.
    Bazmi AA, Zahedi G (2011) Sustainable energy systems: role of optimization modeling techniques in power generation and supply—a review. Renew Sustain Energy Rev 15(8):3480–3500CrossRefGoogle Scholar
  3. 3.
    Sovacool BK, Perea MAM, Matamoros AV, Enevoldsen P (2016) Valuing the manufacturing externalities of wind energy: assessing the environmental profit and loss of WIND TURBINEs in Northern Europe. Wind Energy 19(9):1623–1647CrossRefGoogle Scholar
  4. 4.
    Hau E (2013) Basic concepts of wind energy converters. Wind turbines. Springer, Berlin, pp 65–78CrossRefGoogle Scholar
  5. 5.
    Shi R, Fan X, He Y (2017) Comprehensive evaluation index system for wind power utilization levels in wind farms in China. Renew Sustain Energy Rev 69:461–471CrossRefGoogle Scholar
  6. 6.
    MacPhee WD, Beyene A (2016) Fluid–structure interaction analysis of a morphing vertical axis wind turbine. J Fluids Struct 60:143–159CrossRefGoogle Scholar
  7. 7.
    MacPhee WD, Beyene A (2015) Experimental and fluid structure interaction analysis of a morphing wind turbine rotor. Energy 90:1055–1065CrossRefGoogle Scholar
  8. 8.
    Jeong J, Park K, Jun S, Lee DH (2012) Design optimization of a wind turbine blade to reduce the fluctuating unsteady aerodynamic load in turbulent wind. J Mech Sci Technol 26:827–838CrossRefGoogle Scholar
  9. 9.
    Bai L, Li F, Cui H, Jiang T, Sun H, Zhu J (2016) Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty. Appl Energy 167:270–279CrossRefGoogle Scholar
  10. 10.
    Sovacool BK, Burke M, Baker L, Kotikalapudi CK, Wlokas H (2017) New frontiers and conceptual frameworks for energy justice. Energy Policy 105:677–691CrossRefGoogle Scholar
  11. 11.
    Forcier L-C, Joncas S (2012) Development of a structural optimization strategy for the design of next generation large thermoplastic wind turbine blades. Struct Multidiscip Optim 45(6):889–906zbMATHCrossRefGoogle Scholar
  12. 12.
    Annoni J, Howard K, Seiler P, Guala M (2016) An experimental investigation on the effect of individual turbine control on wind farm dynamics. Wind Energy 19(8):1453–1467CrossRefGoogle Scholar
  13. 13.
    Sawalhi N, Randall RB (2014) Gear parameter identification in a wind turbine gear box using signal vibrations. Mech Syst Signal Process 42:368–376CrossRefGoogle Scholar
  14. 14.
    Bai C-J, Wang W-C (2016) Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (Hawind turbines). Renew Sustain Energy Rev 63:506–519CrossRefGoogle Scholar
  15. 15.
    Raciti Castelli M, Englaro A, Benini E (2011) The Darrieus wind turbine: proposal for a new performance prediction model based on CFD. Energy 36(8):4919–4934CrossRefGoogle Scholar
  16. 16.
    Pinto RN, Afzal A, D’Souza LV, Ansari Z, Samee ADM (2016) Computational fluid dynamics in turbomachinery: a review of state of the art. Arch Comput Methods Eng 24:467–479MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Yang H, Shen W, Haoran X, Hong Z, Liu C (2014) Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD. Renew Energy 70:107–115CrossRefGoogle Scholar
  18. 18.
    Liu Z, Wang X, Kang S (2014) Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations. Energy 73:126–136CrossRefGoogle Scholar
  19. 19.
    Tummala A, Velamati RK, Sinha DK, Indraja V, Hari Krishna V (2016) A review on small scale WIND TURBINEs. Renew Sustain Energy Rev 56:1351–1371CrossRefGoogle Scholar
  20. 20.
    Hsiao F-B, Bai C-J, Chong W-T (2013) The performance test of three different horizontal axis WIND TURBINE (HAWIND TURBINE) blade shapes using experimental and numerical methods. Energies 6(6):2784–2803CrossRefGoogle Scholar
  21. 21.
    Chen J, Yang H, Yang M, Hongtao X, Zuohuan H (2015) A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis WIND TURBINE. Renew Sustain Energy Rev 51:1709–1720CrossRefGoogle Scholar
  22. 22.
    Lanzafame R, Mauro S, Messina M (2013) WIND TURBINE CFD modeling using a correlation-based transitional model. Renew Energy 52:31–39CrossRefGoogle Scholar
  23. 23.
    Giahi MH, Dehkordi AJ, Mohammad Hossein (2016) Investigating the influence of dimensional scaling on aerodynamic characteristics of WIND TURBINE using CFD simulation. Renew Energy 97:162–168CrossRefGoogle Scholar
  24. 24.
    Richard JAM, Stevens CM (2016) Flow structure and turbulence in wind Farms. Ann Rev Fluid Mech 49:331–339MathSciNetGoogle Scholar
  25. 25.
    Danao LA, Eboibi O, Howell R (2013) An experimental investigation into the influence of unsteady wind on the performance of a vertical axis WIND TURBINE. Appl Energy 107:403–407CrossRefGoogle Scholar
  26. 26.
    Bhutta MMA, Hayat N, Farooq AU, Ali Z, Jamil SR, Hussain Z (2012) Vertical axis WIND TURBINE–A review of various configurations and design techniques. Renew Sustain Energy Rev 16(4):1926–1939CrossRefGoogle Scholar
  27. 27.
    Akwa JV, Vielmo HA, Petry AP (2012) A review on the performance of Savonius wind turbines. Renew Sustain Energy Rev 16(5):3054–3064CrossRefGoogle Scholar
  28. 28.
    Wang L, Liu X, Kolios A (2016) State of the art in the aeroelasticity of WIND TURBINE blades: aeroelastic modelling. Renew Sustain Energy Rev 64:195–210CrossRefGoogle Scholar
  29. 29.
    Wang L, Quant R, Kolios A (2016) Fluid structure interaction modelling of horizontal-axis WIND TURBINE blades based on CFD and FEA. J Wind Eng Ind Aerodyn 158:11–25CrossRefGoogle Scholar
  30. 30.
    Delafin P-L, Nishino T, Wang L, Kolios A (2016) Effect of the number of blades and solidity on the performance of a vertical axis WIND TURBINE. J Phys Conf Ser 753:022033CrossRefGoogle Scholar
  31. 31.
    Baldwin BS, Barth TJ (1991) A one-equation turbulence transport model for high reynolds number wall-bounded flows. In: 29th Aerospace Sciences Meeting and Exhibit, no. AIAA 91-0610, American Institute of Aeronautics and AstronauticsGoogle Scholar
  32. 32.
    Chen X, Agarwal R (2010) Optimization of flatback airfoils for WIND TURBINE blades using a genetic algorithm with an artificial neural network. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, pp 4–7Google Scholar
  33. 33.
    Chen X, Agarwal R (2012) Optimization of flat back airfoils for WIND TURBINE blades using a multi-objective genetic algorithm. In: ASME 2012 6th international conference on energy sustainability collocated with the ASME 2012 10th international conference on fuel cell science, engineering and technology. American Society of Mechanical Engineers, pp 1313–1324Google Scholar
  34. 34.
    Chen XM, Agarwal R (2012) Optimization of flat back airfoils for wind-turbine blades using a genetic algorithm. J Aircraft 49:622–629CrossRefGoogle Scholar
  35. 35.
    Ju YP, Zhang CH (2012) Multi-point robust design optimization of WIND TURBINE airfoil under geometric uncertainty. Proc Inst Mech Eng A J Pow 226:245–261CrossRefGoogle Scholar
  36. 36.
    Fischer GR, Kipouros T, Savill AM (2014) Multi-objective optimisation of horizontal axis WIND TURBINE structure and energy production using aerofoil and blade properties as design variables. Renew Energy 62:506–515CrossRefGoogle Scholar
  37. 37.
    Montesano J, Chu H, Singh CV (2016) Development of a physics-based multi-scale progressive damage model for assessing the durability of WIND TURBINE blades. Compos Struct 141:50–62CrossRefGoogle Scholar
  38. 38.
    Bottasso CL, Campagnolo F, Croce A, Dilli S, Gualdoni F, Nielsen MB (2014) Structural optimization of WIND TURBINE rotor blades by multilevel sectional/multibody/3D-FEM analysis. Multibody Sys Dyn 32(1):87–116CrossRefGoogle Scholar
  39. 39.
    Duvigneau R, Visonneau M (2004) Hybrid genetic algorithms and artificial neural networks for complex design optimization in CFD. Int J Numer Meth Fluids 44:1257–1278zbMATHCrossRefGoogle Scholar
  40. 40.
    Yin B, Xu D, An Y, Chen Y (2008) Aerodynamic optimization of 3D wing based on iSIGHT. Appl Math Mech 29:603–610zbMATHCrossRefGoogle Scholar
  41. 41.
    Rašuo B, Dinulović M, Veg A, Grbović A, Bengin A (2014) Harmonization of new wind turbine rotor blades development process: a review. Renew Sustain Energy Rev 39:874–882CrossRefGoogle Scholar
  42. 42.
    Kumar MS, Krishnan AS, Vijayanandh R (2018) Vibrational fatigue analysis of NACA 63215 small horizontal axis wind turbine blade. Mater Today Proc 5(2):6665–6674CrossRefGoogle Scholar
  43. 43.
    Vučina D, Marinić-Kragić I, Milas Z (2016) Numerical models for robust shape optimization of WIND TURBINE blades. Renew Energy 87:849–862CrossRefGoogle Scholar
  44. 44.
    Kam TY, Su HM, Huang CY (2017) Quasi-static buckling and first-ply failure loads of shear web reinforced glass-fabric composite wind blades. Compos Struct 160:1225–1235CrossRefGoogle Scholar
  45. 45.
    Cai X, Pan P, Zhu J, Gu R (2013) The analysis of the aerodynamic character and structural response of large-scale wind turbine blades. Energies 6(7):3134–3148CrossRefGoogle Scholar
  46. 46.
    Wong KH, Chong WT, Sukiman NL, Poh SC, Shiah Y-C, Wang C-T (2017) Performance enhancements on vertical axis WIND TURBINEs using flow augmentation systems: a review. Renewable and sustainable Energy reviews 73:904–921CrossRefGoogle Scholar
  47. 47.
    Almohammadi KM, Ingham DB, Ma L, Pourkashan M (2013) Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis WIND TURBINE. J Energy 58:483–493CrossRefGoogle Scholar
  48. 48.
    Sabaeifard P, Razzaghi H, Forouzandeh A (2012) Determination of Vertical Axis WIND TURBINEs Optimal Configurtion through CFD Simulation. Int Conf Future Environ Energy IPCBEE Singapore 28:109–113Google Scholar
  49. 49.
    Bianchini A, Balduzzi F, Bachant P, Ferrara G, Ferrari L (2017) Effectiveness of two-dimensional CFD simulations for Darrieus VAWIND TURBINEs: a combined numerical and experimental assessment. Energy Convers Manag 136:318–328CrossRefGoogle Scholar
  50. 50.
    Lam HF, Peng HY (2016) Study of wake characteristics of a vertical axis WIND TURBINE by two- and three-dimensional computational fluid dynamics simulations. Renew Energy 90:386–398CrossRefGoogle Scholar
  51. 51.
    Peng HY, Lam HF (2016) Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis WIND TURBINE by wind tunnel tests and large eddy simulations. Energy 109:557–568CrossRefGoogle Scholar
  52. 52.
    Kono T, Nebucho S, Kogaki T, Kiwata T, Kimura S, Komatsu N (2017) Numerical analysis of the effects of rotating wind turbine blades on the aerodynamic forces acting on tower. Energies 10(1):121CrossRefGoogle Scholar
  53. 53.
    Shaheen M, El-Sayed M, Shaaban A (2015) Numerical study of two-bucket Savonius wind turbine cluster. J Wind Eng Ind Aerodyn 137:78–98CrossRefGoogle Scholar
  54. 54.
    Zhou T, Rempfer D (2013) Numerical study of detailed flow field and performance of Savonius WIND TURBINEs. J Renew Energy 51:373–381CrossRefGoogle Scholar
  55. 55.
    Sayed MA, Kandil HA, Shaltot A (2012) Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method. J Energy Convers Manag 64:541–550CrossRefGoogle Scholar
  56. 56.
    Jin X, Wang Y, Ju W, He J, Xie S (2018) Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation. Renew Energy 115:41–53CrossRefGoogle Scholar
  57. 57.
    Tabrizi AB, Whale J, Lyons T, Urmee T (2014) Performance and safety of rooftop WIND TURBINEs: use of CFD to gain insight into inflow conditions. J Renew Energy 67:242–251CrossRefGoogle Scholar
  58. 58.
    Howell R, Qin N, Edwards J, Durrani N (2010) Wind tunnel and numerical study of a small vertical axis WIND TURBINE. J Renew Energy 35:412–422CrossRefGoogle Scholar
  59. 59.
    Kalvig S, Manger E, Hjertager B (2014) Comparing different CFD WIND TURBINE modelling approaches with wind tunnel measurements. J Phys Conf Ser 555:1–13CrossRefGoogle Scholar
  60. 60.
    Li Y, Paik KJ, Xing T, Carrica PM (2012) Dynamic overset CFD simulations of WIND TURBINE aerodynamics. J Renew Energy 37:285–298CrossRefGoogle Scholar
  61. 61.
    Dhert T, Ashuri T, Martins JR (2017) Aerodynamic shape optimization of WIND TURBINE blades using a Reynolds-averaged Navier-Stokes model and an adjoint method. Wind Energy 20(5):909–926CrossRefGoogle Scholar
  62. 62.
    Li Ch, Zhu S, Xu Y-L, Xiao Y (2013) 2.5D large eddy simulation of vertical axis WIND TURBINE in consideration of high angle of attack flow. J Renew Energy 51:317–330CrossRefGoogle Scholar
  63. 63.
    Yan C, Archer CL (2018) Assessing compressibility effects on the performance of large horizontal-axis wind turbines. Appl Energy 212:33–45CrossRefGoogle Scholar
  64. 64.
    Hassanzadeh R (2017) Best location of the small WIND TURBINE around a single high-rise building. Int J Green Energy 14(2):196–204MathSciNetCrossRefGoogle Scholar
  65. 65.
    Beran P, Stanford B, Schrock C (2017) Uncertainty quantification in aeroelasticity. Annu Rev Fluid Mech 49:361–386MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Göçmen T, Van der Laan P, Réthoré PE, Diaz AP, Larsen GC, Ott S (2016) WIND TURBINE wake models developed at the technical university of Denmark: a review. Renew Sustain Energy Rev 60:752–769CrossRefGoogle Scholar
  67. 67.
    Wu Z, Cao Y, Nie S, Yang Y (2017) Effects of rain on vertical axis wind turbine performance. J Wind Eng Ind Aerodyn 170:128–140CrossRefGoogle Scholar
  68. 68.
    Yu H (2017) A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods. Energy 138:257–289CrossRefGoogle Scholar
  69. 69.
    Kumar R, Raahemifar K, Fung AS (2018) A critical review of vertical axis wind turbines for urban applications. Renew Sustain Energy Rev 89:281–291CrossRefGoogle Scholar
  70. 70.
    Nikolić V, Shamshirband S, Petković D, Mohammadi K, Ćojbašić Ž, Altameem TA, Gani A (2015) Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology. Energy 80(361–372):3Google Scholar
  71. 71.
    Spalart PR, Allmaras SR (1994) A one equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1:5–21Google Scholar
  72. 72.
    Kasmi AE, Masson C (2008) An extended k–ε model for turbulent flow through horizontal-axis WIND TURBINEs. J Wind Eng Ind Aerodyn 96(1):103–122CrossRefGoogle Scholar
  73. 73.
    Wu X (2017) Inflow turbulence generation methods. Annu Rev Fluid Mech 49:23–49MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Rocha PAC et al (2014) k–ω SST (shear stress transport) turbulence model calibration: a case study on a small scale horizontal axis WIND TURBINE. Energy 65:412–418CrossRefGoogle Scholar
  75. 75.
    Zhiyin Y (2015) Large-eddy simulation: past, present and the future. Chin J Aeronaut 28(1):11–24CrossRefGoogle Scholar
  76. 76.
    Solís-Gallego I, Meana-Fernández A, Oro JF, Díaz KA, Velarde-Suárez S (2018) LES-based numerical prediction of the trailing edge noise in a small wind turbine airfoil at different angles of attack. Renew Energy 120:241–254CrossRefGoogle Scholar
  77. 77.
    Wang G, Zhang L, Shen WZ (2018) LES simulation and experimental validation of the unsteady aerodynamics of blunt wind turbine airfoils. Energy 158:241–254Google Scholar
  78. 78.
    Benard P, Viré A, Moureau V, Lartigue G, Beaudet L, Deglaire P, Bricteux L (2018) Large-Eddy Simulation of wind turbines wakes including geometrical effects. Comput Fluid 173:133–139MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Sedaghatizadeh N, Arjomandi M, Kelso R, Cazzolato B, Ghayesh MH (2018) Modelling of wind turbine wake using large eddy simulation. Renew Energy 115:1166–1176CrossRefGoogle Scholar
  80. 80.
    Fröhlich J, von Terzi D (2008) Hybrid LES/RANS methods for the simulation of turbulent flows. Prog Aerosp Sci 49:349–377CrossRefGoogle Scholar
  81. 81.
    Benarafa Y, Cioni O, Ducros F, Sagaut P (2006) RANS/LES coupling for unsteady turbulent flow simulation at high Reynolds number on coarse meshes. Comput Methods Appl Mech Eng 195:2939–2960MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Spalart PR (2000) Strategies for turbulence modelling and simulations. Int J Heat Fluid Flow 21:252–263CrossRefGoogle Scholar
  83. 83.
    Spalart PR, Deck S, Shur ML, Squires KD, Strelets M, Travin A (2006) A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor Comp Fluid Dyn 20:181–195zbMATHCrossRefGoogle Scholar
  84. 84.
    D’Alessandro V, Montelpare S, Ricci R, Zoppi A (2017) Numerical modeling of the flow over WIND TURBINE airfoils by means of Spalart-Allmaras local correlation based transition model. Energy 130:402–419CrossRefGoogle Scholar
  85. 85.
    Vasel-Be-Hagh A, Archer CL (2017) Wind farm hub height optimization. Appl Energy 195:905–921CrossRefGoogle Scholar
  86. 86.
    Miller A, Chang B, Issa R, Chen G (2013) Review of computer-aided numerical simulation in wind energy. Renew Sustain Energy Rev 25:122–134CrossRefGoogle Scholar
  87. 87.
    Zlomusica E (2013) Wind, handbook of sustainable engineering. Springer, Berlin, pp 1109–1142CrossRefGoogle Scholar
  88. 88.
    Mycek P, Pinon G, Lothodé C, Dezotti A, Carlier C (2017) Iterative solver approach for turbine interactions: application to wind or marine current turbine farms. Appl Math Model 41:331–349MathSciNetCrossRefGoogle Scholar
  89. 89.
    Madenci E, Guven I (2015) The finite element method and applications in engineering using ANSYS. Springer, Berlin, pp 35–74CrossRefGoogle Scholar
  90. 90.
    Albanesi A, Fachinotti V, Peralta I, Storti B, Gebhardt C (2017) Application of the inverse finite element method to design wind turbine blades. Compos Struct 161:160–172CrossRefGoogle Scholar
  91. 91.
    Chong WT, Muzammil WK, Wong KH, Wang CT, Gwani M, Chu YJ, Poh SC (2017) Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design. Appl Energy 207:78–95CrossRefGoogle Scholar
  92. 92.
    Li Y, Castro AM, Sinokrot T, Prescott W, Carrica PM (2015) Coupled multi-body dynamics and CFD for WIND TURBINE simulation including explicit wind turbulence. Renew Energy 76:338–361CrossRefGoogle Scholar
  93. 93.
    Zienkiewicz OC, Taylor RL (1991) The finite element method. Solid and fluid mechanics, vol 2. McGraw-Hill, New YorkGoogle Scholar
  94. 94.
    Wen B, Tian X, Dong X, Peng Z, Zhang W (2017) Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine. Energy 141:2054–2068CrossRefGoogle Scholar
  95. 95.
    LeVeque RJ (1992) Computing discontinuous solutions. Numerical methods for conservation laws. Birkhäuser, Basel, pp 114–121CrossRefzbMATHGoogle Scholar
  96. 96.
    Morton KW, Mayers DF (2005) Numerical solution of partial differential equations: an Introduction. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  97. 97.
    Lomax H, Pulliam TH, Zingg DW (2013) Fundamentals of computational fluid dynamics. Springer, BerlinzbMATHGoogle Scholar
  98. 98.
    Menegozzo L, Dal Monte A, Benini E, Benato A (2018) Small wind turbines: a numerical study for aerodynamic performance assessment under gust conditions. Renew Energy 121:123–132CrossRefGoogle Scholar
  99. 99.
    Moshfeghi M, Shams S, Hur N (2017) Aerodynamic performance enhancement analysis of horizontal axis wind turbines using a passive flow control method via split blade. J Wind Eng Ind Aerodyn 167:148–159CrossRefGoogle Scholar
  100. 100.
    Ebrahimi A, Movahhedi M (2018) Wind turbine power improvement utilizing passive flow control with microtab. Energy 150:575–582CrossRefGoogle Scholar
  101. 101.
    Cai X, Gu R, Pan P, Zhu J (2016) Unsteady aerodynamics simulation of a full-scale horizontal axis WIND TURBINE using CFD methodology. J Energy Convers Manag 112:146–156CrossRefGoogle Scholar
  102. 102.
    Bedon G, De Betta S, Benini E (2016) 10WIND TURBINEs. J Renew Energy 94:328–340CrossRefGoogle Scholar
  103. 103.
    Clainche SL, Ferrer E (2018) A reduced order model to predict transient flows around straight bladed vertical axis wind turbines. Energies 11(3):1–24CrossRefGoogle Scholar
  104. 104.
    Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) Fluid–structure interaction modeling of vertical-axis wind turbines. J Appl Mech 81(8):081006CrossRefGoogle Scholar
  105. 105.
    Schaffarczyk AP (2014) Impact of aerodynamics on blade design. Introduction to wind turbine aerodynamics. Springer, Berlin, pp 185–198Google Scholar
  106. 106.
    Cheng Q, Liu X, Ji HS, Kim KC, Yang B (2017) Aerodynamic analysis of a helical vertical axis wind turbine. Energies 10(4):575CrossRefGoogle Scholar
  107. 107.
    Sorensen NN, Hansen MOL (1998) Rotor performance predictions using a Navier–Stokes method. Am Inst Aeronaut Astronaut 98:52–59Google Scholar
  108. 108.
    Bazilevs Y, Hsu M-C, Kiendel J, Wuchner R, Bletzigner KU (2011) 3D simulation of WIND TURBINE rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. J Numer Methods Fluids 65:236–253zbMATHCrossRefGoogle Scholar
  109. 109.
    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu MC, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21(4):359–398MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Maizi M, Mohamed MH, Dizene R, Mihoubi MC (2018) Noise reduction of a horizontal wind turbine using different blade shapes. Renew Energy 117:242–256CrossRefGoogle Scholar
  111. 111.
    Mohamed M, Ali AM, Hafiz AA (2015) CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Eng Sci Technol Int J 18(1):1–13CrossRefGoogle Scholar
  112. 112.
    Balduzzi F, Bianchini A, Maleci R, Ferrara G, Ferrari L (2016) Critical issues in the CFD simulation of Darrieus wind turbfines. J Renew Energy 85:419–435CrossRefGoogle Scholar
  113. 113.
    Balduzzi F, Drofelnik J, Bianchini F, Ferrara A, Ferrari L, Campobasso MS (2017) Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment. J Energy 128:550–563CrossRefGoogle Scholar
  114. 114.
    Orlandi A, Collu M, Zanforlin S, Shires A (2015) 3D URANS analysis of a vertical axis WIND TURBINE in skewed flows. J Wind Eng Ind Aerodyn 147:77–84CrossRefGoogle Scholar
  115. 115.
    Wu YT, Porte-Agel F (2015) Modeling turbine wakes and power losses within a wind farm using LES: an application to the Horns Rev offshore wind farm. J Renew Energy 75:945–955CrossRefGoogle Scholar
  116. 116.
    Make M, Vaz G (2015) Analyzing scaling effects on offshore WIND TURBINEs using CFD. J Renew Energy 83:1326–1340CrossRefGoogle Scholar
  117. 117.
    Balduzzi F, Bianchini A, Gigante FA, Ferrara G, Campobasso MS, Ferrari L (2015) Parametric and comparative assessment of Navier-Stokes CFD Methodologies For Darrieus wind turbine performance analysis. In: Proceedings of ASME turbo expo 2015: turbine technical conference and exposition, Montréal, CanadaGoogle Scholar
  118. 118.
    Rezaeiha A, Kalkman I, Blocken B (2017) CFD simulation of a vertical axis WIND TURBINE operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment. J Renew Energy 107:373–385CrossRefGoogle Scholar
  119. 119.
    Gebrad PMO, Teeuwisse FW, van Wingerden JW, Fleming PA, Ruben SD, Marden JR, Pao LY (2014) a data-driven model for wind plant power optimization by yaw control. In: 2014 American Control Conference (ACC), Portland, Oregon, USAGoogle Scholar
  120. 120.
    Stevenes RJAM, Gayme DF, Meneveau Ch (2014) Large eddy simulation studies of the effects of alignment and wind farm length. J Renew Sustain Energy 6:023105-1–02310502310514Google Scholar
  121. 121.
    Naccache G, Paraschivoiu M (2018) Parametric study of the dual vertical axis wind turbine using CFD. J Wind Eng Ind Aerodyn 172:244–255CrossRefGoogle Scholar
  122. 122.
    Chen J, Wang Q, Zhang S, Eecen P, Grasso F (2016) A new direct design method of WIND TURBINE airfoils and wind tunnel experiment. Appl Math Modell 40(3):2002–2014MathSciNetCrossRefGoogle Scholar
  123. 123.
    Bhargav MMSRS, Kishore VR, Laxman V (2016) Influence of fluctuating wind conditions on vertical axis wind turbine using a three dimensional CFD model. J Wind Eng Ind Aerodyn 158:98–108CrossRefGoogle Scholar
  124. 124.
    Pourrajabian A, Nazemi Afshar P, Ahmadizadeh A, Wood D (2016) Aero-structural design and optimization of a small WIND TURBINE blade. Renew Energy 87(2):837–848CrossRefGoogle Scholar
  125. 125.
    Kim T, Jeon M, Lee S, Shin H (2014) Numerical simulation of flat-back airfoil aerodynamic noise. Renew Energy 65:192–201CrossRefGoogle Scholar
  126. 126.
    Roshan SZ, Alimirzazadeh S, Rad M (2015) RANS simulations of the stepped duct effect on the performance of ducted wind turbine. J Wind Eng Ind Aerodyn 145:270–279CrossRefGoogle Scholar
  127. 127.
    Hand B, Kelly G, Cashman A (2017) Numerical simulation of a vertical axis WIND TURBINE airfoil experiencing dynamic stall at high Reynolds numbers. J Comput Fluids 149:12–30MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    O’Brien JM, Young TM, O’Mahoney DC, Griffin PC (2017) Horizontal axis WIND TURBINE research: a review of commercial CFD, FE codes and experimental practices. Prog Aerosp Sci 92:1–24CrossRefGoogle Scholar
  129. 129.
    Ciri U, Rotea M, Santoni Ch, Leonardi S (2017) Large-eddy simulations with extremum-seeking control for individual WIND TURBINE power optimization. Wind Energy 20(9):1617–1634CrossRefGoogle Scholar
  130. 130.
    Jha SK, Bilalovic J, Jha A, Patel N, Zhang H (2017) Renewable energy: present research and future scope of Artificial Intelligence. Renew Sustain Energy Rev 77:297–317CrossRefGoogle Scholar
  131. 131.
    Ashuri T, Zaaijer MB, Martins JRRA, van Bussel GJW, van Kuik GAM (2014) Multidisciplinary design optimization of offshore WIND TURBINEs for minimum levelized cost of energy. Renew Energy 68:893–905CrossRefGoogle Scholar
  132. 132.
    Pérez-Collazo C, Greaves D, Iglesias G (2015) A review of combined wave and offshore wind energy. Renew Sustain Energy Rev 42:141–153CrossRefGoogle Scholar
  133. 133.
    Karthikeyan N, Kalidasa Murugavel K, Arun Kumar S, Rajakumar S (2015) Review of aerodynamic developments on small horizontal axis WIND TURBINE blade. Renew Sustain Energy Rev 42:801–822CrossRefGoogle Scholar
  134. 134.
    Henrik ST, Kim B et al (2011) Defect distribution and reliability assessment of WIND TURBINE blades. Eng Struct 33:171–181CrossRefGoogle Scholar
  135. 135.
    Liu W (2016) Design and kinetic analysis of WIND TURBINE blade-hub-tower coupled system. Renew Energy 94:547–557CrossRefGoogle Scholar
  136. 136.
    Shokrieh Mahmood M, Roham R (2006) Simulation of fatigue failure in a full composite WIND TURBINE blade. Compos Struct 74:332–342CrossRefGoogle Scholar
  137. 137.
    Maalawi Karam Y, Negm HM (2002) Optimal frequency design of WIND TURBINE blades. J Wind Eng Ind Aerodyn 90:961–986CrossRefGoogle Scholar
  138. 138.
    Chen J, Wang Q, Shen WZ, Pang X, Li S, Guo X (2013) Structural optimization study of composite WIND TURBINE blade. Mater Des 46(2013):247–255CrossRefGoogle Scholar
  139. 139.
    Bazilevs Y, Hsu MC et al (2011) 3D simulation of WIND TURBINE rotors at full scale. Int J Numer Methods Fluids 65:207–235zbMATHCrossRefGoogle Scholar
  140. 140.
    Barnes RH, Morozov EV, Shankar K (2015) Improved methodology for design of low wind speed specific WIND TURBINE blades. Compos Struct 119:677–684Google Scholar
  141. 141.
    Belessis MA, Stamos DG, Voutsinas SG (1996) Investigation of the capabilities of a genetic optimization algorithm in designing WIND TURBINE rotors. In: Proc European union wind energy conf and exhibition, pp 124–127Google Scholar
  142. 142.
    Abdollahzadeh H, Atashgar K, Abbasi M (2016) Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups. Renew Energy 88:247–261CrossRefGoogle Scholar
  143. 143.
    Lee K-H, Joo W, Kim K-H, Lee D-H, Lee K-T, Park J (2007) Numerical optimization using improvement of the design space feasibility for Korean offshore horizontal axis WIND TURBINE blade. In: European wind energy conference & exhibition EWECGoogle Scholar
  144. 144.
    Mendez J, Wind GD (2006) “Blade chord and twist angle optimization using genetic algorithms. In: Fifth international conference on engineering computational technology. Las Palmas de Gran Canaria (Spain), pp 12–25Google Scholar
  145. 145.
    Wang T (2012) A brief review on WIND TURBINE aerodynamics. Theor Appl Mech Lett 2(6):062001CrossRefGoogle Scholar
  146. 146.
    Diab F, Lan H, Ali S (2016) Novel comparison study between the hybrid renewable energy systems on land and on ship. Renew Sustain Energy Rev 63:452–463CrossRefGoogle Scholar
  147. 147.
    Atashgar K, Abdollahzadeh H (2016) Reliability optimization of wind farms considering redundancy and opportunistic maintenance strategy. Energy Convers Manag 112:445–458CrossRefGoogle Scholar
  148. 148.
    Pindado S, Vega E, Martínez A, Meseguer E, Franchini S, Sarasola IP (2011) Analysis of calibration results from cup and propeller anemometers. Influence on WIND TURBINE Annual Energy Production (AEP) calculations. Wind Energy 14:119–132CrossRefGoogle Scholar
  149. 149.
    Şişbot S, Turgut Ö, Tunç M, Çamdal Ü (2010) Optimal positioning of WIND TURBINEs on Gökçeada using multi-objective genetic algorithm. Wind Energy 13:297–306CrossRefGoogle Scholar
  150. 150.
    Chen K, Song MX, Zhang X, Wang SF (2016) WIND TURBINE layout optimization with multiple hub height WIND TURBINEs using greedy algorithm. Renew Energy 96:676–686CrossRefGoogle Scholar
  151. 151.
    Wang L, Tan Andy CC, Cholette M, Yuantong G (2016) Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights. Energy Convers Manag 124:189–202CrossRefGoogle Scholar
  152. 152.
    Feng J, Shen WZ (2017) Design optimization of offshore wind farms with multiple types of wind turbines. Appl Energy 205:1283–1297CrossRefGoogle Scholar
  153. 153.
    Fadaee M, Radzi MAM (2012) Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: a review. Renew Sustain Energy Rev 16:3364–3369CrossRefGoogle Scholar
  154. 154.
    Al-Abadi A, Ertunc O, Beyer F, Delgado A (2014) Torque-matched aerodynamic shape optimization of hawind turbine rotor. J Phys Conf Ser. CrossRefGoogle Scholar
  155. 155.
    Heinz JC, Sørensen NN, Zahle F (2016) Fluid–structure interaction computations for geometrically resolved rotor simulations using CFD. Wind Energy. CrossRefGoogle Scholar
  156. 156.
    Perera ATD, Attalage RA, Perera KKCK, Dassanayake VPC (2013) A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Appl Energy 107:412–425CrossRefGoogle Scholar
  157. 157.
    Niknam T, Taheri SI, Aghaei J, Tabatabaei S, Nayeripour MA (2011) Modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources. Appl Energy 88:4817–4830CrossRefGoogle Scholar
  158. 158.
    Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91:992–1007CrossRefGoogle Scholar
  159. 159.
    Tezer T, Yaman R, Yaman G (2017) Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems. Renew Sustain Energy Rev 73:840–853CrossRefGoogle Scholar
  160. 160.
    Mahbub MS, Wagner M, Crema L (2016) Incorporating domain knowledge into the optimization of energy systems. Appl Soft Comput 47:483–493CrossRefGoogle Scholar
  161. 161.
    Scappatici L, Bartolini N, Castellani F, Astolfi D, Garinei A, Pennicchi M (2016) Optimizing the design of horizontal-axis small WIND TURBINEs: from the laboratory to market. J Wind Eng Ind Aerodyn 154:58–68CrossRefGoogle Scholar
  162. 162.
    Shen X, Chen J-G, Zhu X-C, Liu P-Y, Zhao-Hui D (2015) Multi-objective optimization of WIND TURBINE blades using lifting surface method. Energy 90:1111–1121CrossRefGoogle Scholar
  163. 163.
    Pérez B, Mínguez R, Guanche R (2013) Offshore wind farm layout optimization using mathematical programming techniques. Renew Energy 53:389–399CrossRefGoogle Scholar
  164. 164.
    Molea L, Di Vitantonio E, Frediani A (2016) Aerodynamic design of ‘box blade’ and ‘non-planar’ wind turbines. Variational analysis and aerospace engineering. Springer, Berlin, pp 333–374CrossRefGoogle Scholar
  165. 165.
    Horst R, Pardalos P, van Thoai N (2000) Introduction to global optimization, 2nd edn. Springer, Berlin, Germany, p 357zbMATHCrossRefGoogle Scholar
  166. 166.
    Gebraad PMO, Teeuwisse FW, Wingerden JW, Fleming PA, Ruben SD, Marden JR, Pao LY (2016) Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study. Wind Energy 19(1):95–114CrossRefGoogle Scholar
  167. 167.
    Iqbal M, Azam M, Naeem M, Khwaja AS, Anpalagan A (2014) Optimization classification, algorithms and tools for renewable energy: a review. Renew Sustain Energy Rev 39:640–654CrossRefGoogle Scholar
  168. 168.
    Martí R, Gallego M, Duarte A (2010) A branch and bound algorithm for the maximum diversity problem. Eur J Oper Res 200:36–44zbMATHCrossRefGoogle Scholar
  169. 169.
    Dinh The Luc (2016) Multiobjective linear programming: an introduction. Springer, Berlin, pp 49–82zbMATHGoogle Scholar
  170. 170.
    Wolsey LA, Nemhauser GL (1999) Integer and combinatorial optimization. Wiley, Hoboken, p 784zbMATHGoogle Scholar
  171. 171.
    Douak M, Aouachria Z, Rabehi R, Allam N (2018) Wind energy systems: analysis of the self-starting physics of vertical axis wind turbine. Renew Sustain Energy Rev 81:1602–1610CrossRefGoogle Scholar
  172. 172.
    Suganthi ST, Devaraj D, Ramar K, Thilagar SH (2018) An improved differential evolution algorithm for congestion management in the presence of wind turbine generators. Renew Sustain Energy Rev 81:635–642CrossRefGoogle Scholar
  173. 173.
    Donovan S (2005) Wind farm optimization. In: Proceedings of the 40th annual conference of the operational research society of New Zealand, Wellington, New Zealand, 2–3 December 2005, pp 196–205Google Scholar
  174. 174.
    Donovan S (2006) An improved mixed integer programming model for wind farm layout optimisation. In: Proceedings of the 41st Annual Conference of the Operational Research Society of New Zealand, Christchurch, New Zealand, 30 November–1 December 2006; pp 143–152Google Scholar
  175. 175.
    Donovan S, Nates G, Waterer H, Archer R (2008) Mixed integer programming models for wind farm design. In: Proceedings of MIP 2008 Workshop on Mixed Integer Programming, New York, NY, USA, 4–7 August 2008, pp 1–21Google Scholar
  176. 176.
    Donovan SB (2008) Whither the wind blows: wind flow modelling and wind farm layout optimisation. The University of Auckland: Auckland, New Zealand, p 92Google Scholar
  177. 177.
    Archer R, Nates G, Donovan S, Waterer H (2011) WIND TURBINE interference in a wind farm layout optimization mixed integer linear programming model. Wind Eng 35:165–178CrossRefGoogle Scholar
  178. 178.
    Kaviani H, Nejat A (2017) Aeroacoustic and aerodynamic optimization of a MW class HAWIND TURBINE using MOPSO algorithm. Energy 140:1198–1215CrossRefGoogle Scholar
  179. 179.
    Maki K, Sbragio R, Vlahopoulos N (2012) System design of a WIND TURBINE using a multi-level optimization approach. Renew Energy 43:101–110CrossRefGoogle Scholar
  180. 180.
    Chen Y (2016) Industrial information integration—a literature review 2006–2015. J Ind Inf Integr 2:30–64Google Scholar
  181. 181.
    Amaral S, Verstraete T, Van den Braembussche R, Arts T (2010) Design and optimization of the internal cooling channels of a high pressure turbine blade—part I: methodology. J Turbomach 132(2):021013CrossRefGoogle Scholar
  182. 182.
    Verstraete T, Amaral S, Van den Braembussche R, Arts T (2010) Design and optimization of the internal cooling channels of a high pressure turbine blade—part II: optimization. J Turbomach 132(2):021014CrossRefGoogle Scholar
  183. 183.
    Nowak G, Wróblewski W (2011) Optimization of blade cooling system with use of conjugate heat transfer approach. Int J Therm Sci 50:1770–1781CrossRefGoogle Scholar
  184. 184.
    Mazaheri K, Zeinalpour M, Bokaei HR (2016) Turbine blade cooling passages optimization using reduced conjugate heat transfer methodology. Appl Therm Eng 103:1228–1236CrossRefGoogle Scholar
  185. 185.
    Culley DM, Funke SW, Kramer SC, Piggott MD (2016) Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays. Renew Energy 85:215–227CrossRefGoogle Scholar
  186. 186.
    Han L, Romero CE, Yao Z (2015) Economic dispatch optimization algorithm based on particle diffusion. Energy Convers Manag 105:1251–1260CrossRefGoogle Scholar
  187. 187.
    Varga A (2013) Computational issues for linear periodic systems: paradigms, algorithms, open problems. Int J Control 86(7):1227–1239MathSciNetzbMATHCrossRefGoogle Scholar
  188. 188.
    Grasso F (2012) Hybrid optimization for WIND TURBINE thick airfoils. In: Proceedings of the 53rd AIAAJASME/ASCE/AHS/ASC structures, structural dynamics and materials conference. AIAA Paper AIAA2012, pp 1–12Google Scholar
  189. 189.
    Bizzarrini N, Grasso F, Coiro DP (2011) Genetic algorithms in WIND TURBINE airfoil design. In: EWEA, EWEC2011. Bruxelles (Belgium), pp 14–27Google Scholar
  190. 190.
    Kahneman D, Tversky A, Slovic P (eds) (1982) Judgment under uncertainty: heuristics and biases. Cambridge University Press, CambridgeGoogle Scholar
  191. 191.
    Rich EA (2007) Automata, computability and complexity: theory and applications, 1st ed. Upper Saddle River, Prentice Hall, p 1120Google Scholar
  192. 192.
    Dobrić G, Đurišić Ž (2014) Double-stage genetic algorithm for wind farm layout optimization on complex terrains. J Renew Sustain Energy 6(3):033127CrossRefGoogle Scholar
  193. 193.
    Saavedra-Moreno B, Salcedo-Sanz S, Paniagua-Tineo Prieto L, Portilla-Figueras A (2011) Seeding evolutionary algorithms with heuristics for optimal WIND TURBINEs positioning in wind farms. Renew Energy 36:2838–2844CrossRefGoogle Scholar
  194. 194.
    DuPont B, Cagan J, Moriarty P (2016) An advanced modeling system for optimization of wind farm layout and WIND TURBINE sizing using a multi-level extended pattern search algorithm. Energy 106:802–814CrossRefGoogle Scholar
  195. 195.
    Suganthi L, Samuel AA (2012) Energy models for demand forecasting—a review. Renew Sustain Energy Rev 16:1223–1240CrossRefGoogle Scholar
  196. 196.
    Gentils T, Wang L, Kolios A (2017) Integrated structural optimisation of offshore WIND TURBINE support structures based on finite element analysis and genetic algorithm. Appl Energy 199:187–204CrossRefGoogle Scholar
  197. 197.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks. Perth (Australia), pp 1942–1948Google Scholar
  198. 198.
    Perez R, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85:1579–1588CrossRefGoogle Scholar
  199. 199.
    Tian L, Zhao N, Wang T, Zhu W, Shen W (2018) Assessment of inflow boundary conditions for RANS simulations of neutral ABL and wind turbine wake flow. J Wind Eng Ind Aerodyn 179:215–228CrossRefGoogle Scholar
  200. 200.
    Tian W, Mao Z, Zhang B, Li Y (2018) Shape optimization of a Savonius wind rotor with different convex and concave sides. Renew Energy 117:287–299CrossRefGoogle Scholar
  201. 201.
    Ata R (2015) Artificial neural networks applications in wind energy systems: a review. Renew Sustain Energy Rev 49:534–562CrossRefGoogle Scholar
  202. 202.
    Parada L, Herrera C, Flores P, Parada V (2018) Assessing the energy benefit of using a wind turbine micro-siting model. Renew Energy 118:591–601CrossRefGoogle Scholar
  203. 203.
    Liu H, Tian H, Chen C, Li Y (2013) An experimental investigation of two Wavelet- MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Electr Power Energy Syst 52:161–173CrossRefGoogle Scholar
  204. 204.
    McKenna R, Ostman Leye P, Fichtner W (2016) Key challenges and prospects for large Wind turbines. Renew Sustain Energy Rev 53:1212–1221CrossRefGoogle Scholar
  205. 205.
    Herbert-Acero JF, Probst O, Réthoré P-E, Larsen GC, Castillo-Villar KK (2014) A review of methodological approaches for the design and optimization of wind farms. Energies 7:6930–7016CrossRefGoogle Scholar
  206. 206.
    Surender Reddy S (2016) Optimal scheduling of wind-thermal power system using clustered adaptive teaching learning based optimization. Electr Eng 1:16. CrossRefGoogle Scholar
  207. 207.
    Endo M (2011) WIND TURBINE airfoil optimization by particle swarm method. Case Western Reserve UniversityGoogle Scholar
  208. 208.
    Liao CC, Zhao XL, Xu JZ (2012) Blade layers optimization of WIND TURBINEs using FAST and improved PSO algorithm. Renew Energy 42:227–233CrossRefGoogle Scholar
  209. 209.
    Kahla S, Soufi Y, Sedraoui M, Bechouat M (2015) On-Off control based particle swarm optimization for maximum power point tracking of WIND TURBINE equipped by DFIG connected to the grid with energy storage. Int J Hydrog Energy 40:13749–13758CrossRefGoogle Scholar
  210. 210.
    Muhyaddin JH, Rawa DWP, Thomas MS (2016) A review on recent development of photovoltaics and wind turbines. Int J Energy and Power Eng 5(6):222–227Google Scholar
  211. 211.
    Faraji R, Naji H (2014) An efficient crossover architecture for hardware parallel implementation of genetic algorithm. Neurocomputing 128:316–327CrossRefGoogle Scholar
  212. 212.
    Hernández JJ et al (2017) Evolving aerodynamic airfoils for WIND TURBINEs through a genetic algorithm. J Phys Conf Ser 792(1) IOP PublishingGoogle Scholar
  213. 213.
    Polat O, Tuncer IH (2013) Aerodynamic shape optimization of wind turbine blades using a parallel genetic algorithm. Procedia Eng 61:28–31CrossRefGoogle Scholar
  214. 214.
    Bencherif M, Brahmi BN, Chikhaoui A (2014) Optimum selection of wind turbines. Sci J Energy Eng 2(4):36–46CrossRefGoogle Scholar
  215. 215.
    Selig MS, Coverstone-Carroll VL (1996) Application of a genetic algorithm to WIND TURBINE design. J Eng Res ASME 118:22–28Google Scholar
  216. 216.
    Alpman E (2014) Effect of selection of design parameters on the optimization of a horizontal axis wind turbine via genetic algorithm. J Phys Conf Ser 524:012044Google Scholar
  217. 217.
    Tabatabaeikia S, Nik-Ghazali N, Chong WT, Shahizare B, Izadyar N, Esmaeilzadeh A, Fazlizan A (2016) Computational and experimental optimization of the exhaust air energy recovery WIND TURBINE generator. Energy Convers Manag 126:862–874CrossRefGoogle Scholar
  218. 218.
    Rodrigues SF, Teixeira Pinto R, Soleimanzadeh M, Bosman PAN, Bauer P (2015) Wake losses optimization of offshore wind farms with moveable floating WIND TURBINEs. Energy Convers Manag 89(2015):933–941CrossRefGoogle Scholar
  219. 219.
    Wang T, Wang L, Zhong W, Xu B, Chen L (2012) Large-scale wind turbine blade design and aerodynamic analysis. Chin Sci Bull 57(5):466–472CrossRefGoogle Scholar
  220. 220.
    Jafaryar M, Kamrani R, Gorji-Bandpy M, Hatami M, Ganji DD (2016) Numerical optimization of the asymmetric blades mounted on a vertical axis cross-flow WIND TURBINE. Int Commun Heat Mass Transf 70:93–104CrossRefGoogle Scholar
  221. 221.
    Ragni D, Ferreira CS, Correale G (2014) Experimental investigation of an optimized airfoil for vertical-axis WIND TURBINEs. Wind Energy 18(9):1629–1643CrossRefGoogle Scholar
  222. 222.
    Sinha S, Chandel SS (2014) Review of software tools for hybrid renewable energy systems. Renew Sustain Energy Rev 32:192–205CrossRefGoogle Scholar
  223. 223.
    Wang J, Qin S, Jin S, Jie W (2015) Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources. Renew Sustain Energy Rev 42:26–42CrossRefGoogle Scholar
  224. 224.
    Sinha S, Chandel SS (2015) Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renew Sustain Energy Rev 50:755–769CrossRefGoogle Scholar
  225. 225.
    Theo WL, Lim JS, Ho WS, Hashim H, Lee CT (2017) Review of distributed generation (DG) system planning and optimisation techniques: comparison of numerical and mathematical modelling methods. Renew Sustain Energy Rev 67:531–573CrossRefGoogle Scholar
  226. 226.
    Bedon G, Paulsen US, Madsen HA, Belloni F, Castelli MR, Benini E (2017) Computational assessment of the DeepWind aerodynamic performance with different blade and airfoil configurations. Appl Energy 185:1100–1108CrossRefGoogle Scholar
  227. 227.
    Ismail MF, Vijayaraghavan K (2015) The effects of aerofoil profile modification on a vertical axis WIND TURBINE performance. Energy 80:20–31CrossRefGoogle Scholar
  228. 228.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculation by fast computing machines. J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  229. 229.
    Kirkpatrick S, Gellat CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680MathSciNetzbMATHCrossRefGoogle Scholar
  230. 230.
    Aarts E, Korst J (1989) Simulated annealing and bultzman machine a stochatic approche to combinatorial optimization and neutral computing. Wiley, HobokenzbMATHGoogle Scholar
  231. 231.
    Kostas Margellos TJ, Lygeros J (2011) Optimal WIND TURBINE placement via randomized optimization techniques. In: Power systems computation conference (PSCC), pp 1–8Google Scholar
  232. 232.
    Rodrigues S, Bauer P, Bosman PAN (2016) Multi-objective optimization of wind farm layouts—complexity, constraint handling and scalability. Renew Sustain Energy reviews 65:587–609CrossRefGoogle Scholar
  233. 233.
    Khan SA, Rehman S (2013) Iterative non-deterministic algorithms in on-shore wind farm design: a brief survey. Renew Sustain Energy Rev 19:370–384CrossRefGoogle Scholar
  234. 234.
    Salcedo-Sanz S, Gallo-Marazuela D, Pastor-Sánchez A, Carro-Calvo L, Portilla-Figueras A, Prieto L (2013) Evolutionary computation approaches for real offshore wind farm layout: a case study in Northern Europe. Expert Syst Appl 40:6292–6297CrossRefGoogle Scholar
  235. 235.
    Mytilinou V, Kolios AJ (2017) A multi-objective optimisation approach applied to offshore wind farm location selection. J Ocean Eng Mar Energy 3(3):265–284CrossRefGoogle Scholar
  236. 236.
    Saeed M, Kim MH (2017) Aerodynamic performance analysis of an airborne WIND TURBINE system with NREL Phase IV rotor. J Energy Convers Manag 134:278–289CrossRefGoogle Scholar
  237. 237.
    Zamani M, Nazari S, Moshizi SA, Maghrebi MJ (2016) Three dimensional simulation of J-shaped Darrieus vertical axis WIND TURBINE. J Energy 116:1243–1255CrossRefGoogle Scholar
  238. 238.
    Ribeiro AFP, Awruch AM, Gomes HM (2012) An airfoil optimization technique for wind turbines. Appl Math Model 36(10):4898–4907CrossRefGoogle Scholar
  239. 239.
    Bedon G, De Betta S, Benini E (2016) Performance-optimized airfoil for Darrieus wind turbines. Renew Energy 94:328–340CrossRefGoogle Scholar
  240. 240.
    Wong KH, Chong WT, Sukiman NL, Shiah YC, Poh SC, Sopian K, Wang WC (2018) Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine. Energy Convers Manag 160:109–125CrossRefGoogle Scholar
  241. 241.
    Li QA, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M (2015) Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine. Energy 90:784–795CrossRefGoogle Scholar
  242. 242.
    Wekesa DW, Wang C, Wei Y (2016) Empirical and numerical analysis of small WIND TURBINE aerodynamic performance at a plateau terrain in Kenya. Renew Energy 90:377–385CrossRefGoogle Scholar
  243. 243.
    Tran T-T, Ki D-H, Bae K-S (2013) Extreme load estimation for a large wind turbine using CFD and unsteady BEM. In: Computational science and its applications—ICCSA 2013, pp 127–142Google Scholar
  244. 244.
    Esfahanian V, Pour AS, Harsini I, Haghani A, Pasandeh R, Shahbazi A, Ahmadi G (2013) Numerical analysis of flow field around NREL Phase II WIND TURBINE by a hybrid CFD/BEM method. J Wind Eng Ind Aerodyn 120:29–36CrossRefGoogle Scholar
  245. 245.
    Tran T-T, Kim D-H (2015) The aerodynamic Interference effects of a floating offshore WIND TURBINE experiencing platform pitching and yaw motions. J Mech Sci Technol 29:549–561CrossRefGoogle Scholar
  246. 246.
    Eroğlu Y, Seçkiner SU (2012) Design of wind farm layout using ant colony algorithm. Renew Energy 44:53–62CrossRefGoogle Scholar
  247. 247.
    Pouladi F, Gilani AM, Nikpour B, Salehinejad H, Jadidoleslam M, Ebrahimi A, Latify MA (2017) Probabilistic transmission expansion planning to maximize the integration of wind power. Renew Energy 114:866–878CrossRefGoogle Scholar
  248. 248.
    Shen X, Chen J, Hu P, Zhu X, Du Z (2018) Study of the unsteady aerodynamics of floating wind turbines. Energy 145:793–809CrossRefGoogle Scholar
  249. 249.
    Borg M, Collu M, Kolios A (2014) Offshore floating vertical axis WIND TURBINEs, dynamics modelling state of the art Part [II]: mooring line and structural dynamics. Renew Sustain Energy Rev 39:1214–1225CrossRefGoogle Scholar
  250. 250.
    Lei H, Zhou D, Lu J, Chen C, Han Z, Bao Y (2017) The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis WIND TURBINE. Energy 119:369–383CrossRefGoogle Scholar
  251. 251.
    Leimeister M, Kolios A (2018) A review of reliability-based methods for risk analysis and their application in the offshore wind industry. Renew Sustain Energy Rev 91:1065–1076CrossRefGoogle Scholar
  252. 252.
    Rinne E, Holttinen H, Kiviluoma J, Rissanen S (2018) Effects of turbine technology and land use on wind power resource potential. Nat Energy 3(6):494CrossRefGoogle Scholar
  253. 253.
    Borg M, Collu M (2015) Offshore floating vertical axis WIND TURBINEs dynamics modelling state of the art Part {III}: hydrodynamics and coupled modelling approaches. Renew Sustain Energy Rev 46:296–310zbMATHCrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2019

Authors and Affiliations

  • Alireza Shourangiz-Haghighi
    • 1
    Email author
  • Mohammad Amin Haghnegahdar
    • 2
  • Lin Wang
    • 3
  • Marco Mussetta
    • 4
  • Athanasios Kolios
    • 5
    • 6
  • Martin Lander
    • 5
  1. 1.Department of Mechanical and Aerospace EngineeringShiraz University of TechnologyShirazIran
  2. 2.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada
  3. 3.School of Mechanical, Aerospace and Automotive EngineeringCoventry UniversityCoventryUK
  4. 4.Dipartimento di EnergiaPolitecnico di MilanoMilanoItaly
  5. 5.Centre for Offshore Renewable Energy Engineering School of Water, Energy and EnvironmentCranfield UniversityCranfieldUK
  6. 6.Department of Naval Architecture, Ocean & Marine EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations