Advertisement

Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis

  • Artem Korobenko
  • Yuri Bazilevs
  • Kenji Takizawa
  • Tayfun E. Tezduyar
Original Paper
  • 169 Downloads

Abstract

This is the first part of a two-part article on computer modeling of wind turbines. We describe the recent advances made by our teams in ALE-VMS and ST-VMS computational aerodynamic and fluid–structure interaction (FSI) analysis of wind turbines. The ALE-VMS method is the variational multiscale version of the Arbitrary Lagrangian–Eulerian method. The VMS components are from the residual-based VMS method. The ST-VMS method is the VMS version of the Deforming-Spatial-Domain/Stabilized Space–Time method. The ALE-VMS and ST-VMS serve as the core methods in the computations. They are complemented by special methods that include the ALE-VMS versions for stratified flows, sliding interfaces and weak enforcement of Dirichlet boundary conditions, ST Slip Interface (ST-SI) method, NURBS-based isogeometric analysis, ST/NURBS Mesh Update Method (STNMUM), Kirchhoff–Love shell modeling of wind-turbine structures, and full FSI coupling. The VMS feature of the ALE-VMS and ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flow, and the moving-mesh feature of the ALE and ST frameworks enables high-resolution computation near the rotor surface. The ST framework, in a general context, provides higher-order accuracy. The ALE-VMS version for sliding interfaces and the ST-SI enable moving-mesh computation of the spinning rotor. The mesh covering the rotor spins with it, and the sliding interface or the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-SI also enables prescribing the fluid velocity at the turbine rotor surface as weakly-enforced Dirichlet boundary condition. The STNMUM enables exact representation of the mesh rotation. The analysis cases reported include both the horizontal-axis and vertical-axis wind turbines, stratified and unstratified flows, standalone wind turbines, wind turbines with tower or support columns, aerodynamic interaction between two wind turbines, and the FSI between the aerodynamics and structural dynamics of wind turbines. Comparisons with experimental data are also included where applicable. The reported cases demonstrate the effectiveness of the ALE-VMS and ST-VMS computational analysis in wind-turbine aerodynamics and FSI.

Notes

Acknowledgements

First and second authors wish to thank the Texas Advanced Computing Center (TACC) and the San Diego Supercomputing Center (SDSC) for providing HPC resources that have contributed to the research results reported in this paper. The second author acknowledges the support of the AFOSR Award FA9550-16-1-0131 and ARO Grant W911NF-14-1-0296. The work on the ST computational analysis was supported (third and fourth authors) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from Japan Society for the Promotion of Science; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Council for Science, Technology and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST); and Rice–Waseda research agreement (third author). The work on the ST computational analysis was also supported (fourth author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University.

References

  1. 1.
    Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines, to appear in a special volume to be published by SpringerGoogle Scholar
  2. 2.
    Renewable power generation costs in 2012: An overview, Report, International Renewable Energy Agency, 2012, Available at: http://www.irena.org/Publications/
  3. 3.
    Annual energy outlook 2014, doe/eia-0383(2014), Report, U.S. Energy Information Administration, April 2014, Available at: http://www.eia.gov/forecasts/aeo/
  4. 4.
    Eu energy in figures, statistical pocketbook, (2014) Report, European Commission 2014.  https://doi.org/10.2833/24150
  5. 5.
    Levelized cost of electricity renewable energy technologies, Study, Fraunhofer Institute for Solar Energy Systems ISE, November 2013Google Scholar
  6. 6.
    Sørensen NN, Michelsen JA, Schreck S (2002) Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft × 120 ft wind tunnel. Wind Energy 5:151–169CrossRefGoogle Scholar
  7. 7.
    Pape AL, Lecanu J (2004) 3D Navier–Stokes computations of a stall-regulated wind turbine. Wind Energy 7:309–324CrossRefGoogle Scholar
  8. 8.
    Zahle F, Sørensen NN, Johansen J (2009) Wind turbine rotor-tower interaction using an incompressible overset grid method. Wind Energy 12:594–619CrossRefGoogle Scholar
  9. 9.
    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235.  https://doi.org/10.1002/fld.2400 CrossRefzbMATHGoogle Scholar
  10. 10.
    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344.  https://doi.org/10.1007/s00466-011-0589-2 CrossRefzbMATHGoogle Scholar
  11. 11.
    Li Y, Kim-Jong Paik PMC, Xing T (2012) Dynamic overset CFD simulations of wind turbine aerodynamics. Renew Energy 37:285–298CrossRefGoogle Scholar
  12. 12.
    Guttierez E, Primi S, Taucer F, Caperan P, Tirelli D, Mieres J, Calvo I, Rodriguez J, Vallano F, Galiotis G, Mouzakis D (2003) A wind turbine tower design based on fibre-reinforced composites, Technical report, Joint Research Centre - Ispra, European Laboratory for Structural Assessment (ELSA), Institute For Protection and Security of the Citizen (IPSC), European CommissionGoogle Scholar
  13. 13.
    Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30:2101–2114CrossRefGoogle Scholar
  14. 14.
    Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42:285–330CrossRefGoogle Scholar
  15. 15.
    Jensen FM, Falzon BG, Ankersen J, Stang H (2006) Structural testing and numerical simulation of a 34 m composite wind turbine blade. Compos Struct 76:52–61CrossRefGoogle Scholar
  16. 16.
    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for pre-bending of wind turbine blades. Int J Numer Methods Eng 89:323–336zbMATHCrossRefGoogle Scholar
  18. 18.
    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253zbMATHCrossRefGoogle Scholar
  19. 19.
    Schreck S, Lundquist J, Shaw W (2008) US department of energy workshop report: research needs for wind resource characterization, Technical Report NREL/TP-500-43521, National Renewable Energy LaboratoryGoogle Scholar
  20. 20.
    Barthelmie1 R, Frandsen S, Rathmann O, Hansen K, Politis E, Prospathopoulos J, Schepers J, Rados K, Cabezn D, Schlez W, Neubert A, Heath M (2011) Flow and wakes in large wind farms: Final report for upwind wp8, Technical Report Report number Ris-R-1765(EN), Danmarks Tekniske Universitet, Ris Nationallaboratoriet for Bredygtig EnergGoogle Scholar
  21. 21.
    Westerhellweg A, Caadillas B, Kinder F, Neumann T (2014) Wake measurements at alpha ventus dependency on stability and turbulence intensity. J Phys: Conf Ser (Online).  https://doi.org/10.1088/1742-6596/555/1/012106 Google Scholar
  22. 22.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194:4135–4195MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195:5257–5297MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Bazilevs Y, da Veiga LB, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16:1031–1090MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196:4160–4183zbMATHCrossRefGoogle Scholar
  26. 26.
    Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197:2976–2988MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, ChichesterzbMATHCrossRefGoogle Scholar
  28. 28.
    Evans JA, Bazilevs Y, Babuška I, Hughes TJR (2009) n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198:1726–1741MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199:264–275MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Auricchio F, Beirão da Veiga L, Lovadina C, Reali A (2010) The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput Methods Appl Mech Eng 199:314–323MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Wang W, Zhang Y (2010) Wavelets-based NURBS simplification and fairing. Comput Methods Appl Mech Eng 199:290–300MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Srinivasan V, Radhakrishnan S, Subbarayan G (2010) Coordinated synthesis of hierarchical engineering systems. Comput Methods Appl Mech Eng 199:392–404zbMATHCrossRefGoogle Scholar
  35. 35.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41:371–378MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840.  https://doi.org/10.1016/j.cma.2009.06.019 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order nurbs elements. Comput Methods Appl Mech Eng 197:2732–2762zbMATHCrossRefGoogle Scholar
  42. 42.
    Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373zbMATHCrossRefGoogle Scholar
  43. 43.
    Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. Int J Numer Methods Eng 83:765–785MathSciNetzbMATHGoogle Scholar
  44. 44.
    Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2010) Isogeometric shell analysis: The Reissner-Mindlin shell. Comput Methods Appl Mech Eng 199:276–289MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007) Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943–2959MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178CrossRefGoogle Scholar
  50. 50.
    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150zbMATHCrossRefGoogle Scholar
  51. 51.
    Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin shell analysis. Int J Numer Methods Eng 47:2039–2072zbMATHCrossRefGoogle Scholar
  52. 52.
    Cirak F, Ortiz M (2001) Fully C 1-conforming subdivision elements for finite deformation thin shell analysis. Int J Numer Methods Eng 51:813–833zbMATHCrossRefGoogle Scholar
  53. 53.
    Cirak F, Scott MJ, Antonsson EK, Ortiz M, Schröder P (2002) Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Comput-Aided Des 34:137–148CrossRefGoogle Scholar
  54. 54.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799zbMATHCrossRefGoogle Scholar
  57. 57.
    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Nitsche J (1971) Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh Math Univ Hamburg 36:9–15zbMATHCrossRefGoogle Scholar
  59. 59.
    Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39:1749–1779MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari S, Sarkar S (2015) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25(12):2349–2375MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Yan J, Korobenko A, Tejada-Martinez A, Golshan R, Bazilevs Y (2017) A new variational multiscale formulation for stratified incompressible turbulent flows. Comput Fluids 158:150–156MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Korobenko A, Yan J, Gohari S, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL phase VI experiment. Wind Energy 17:461–481CrossRefGoogle Scholar
  66. 66.
    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398.  https://doi.org/10.1007/s11831-014-9119-7 MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Bazilevs Y, Korobenko A, Deng X, Yan J (2015) Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int J Numer Methods Eng 102:766–783.  https://doi.org/10.1002/nme.4738 CrossRefzbMATHGoogle Scholar
  69. 69.
    Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011.  https://doi.org/10.1115/1.4024415 CrossRefGoogle Scholar
  70. 70.
    Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) FSI modeling of vertical-axis wind turbines. J Appl Mech 81:081006.  https://doi.org/10.1115/1.4027466 CrossRefGoogle Scholar
  71. 71.
    Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174.  https://doi.org/10.1016/j.compfluid.2016.03.008 MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari SMI, Sarkar S (2015) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25:2349–2375.  https://doi.org/10.1142/S0218202515400114 MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010CrossRefGoogle Scholar
  74. 74.
    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRefGoogle Scholar
  78. 78.
    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRefGoogle Scholar
  79. 79.
    Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981.  https://doi.org/10.1007/s00466-013-0858-3 CrossRefzbMATHGoogle Scholar
  80. 80.
    Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911–919.  https://doi.org/10.1007/s00466-013-0931-y MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932.  https://doi.org/10.1007/s00466-013-0967-z MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071.  https://doi.org/10.1007/s00466-014-1059-4 MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225.  https://doi.org/10.1007/s00466-015-1166-x CrossRefzbMATHGoogle Scholar
  84. 84.
    Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetCrossRefGoogle Scholar
  85. 85.
    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905CrossRefGoogle Scholar
  86. 86.
    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRefGoogle Scholar
  87. 87.
    Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y (2017) Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Comput Fluids 142:3–14.  https://doi.org/10.1016/j.compfluid.2015.12.004 MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C (2017) Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Comput Methods Appl Mech Eng, Published online.  https://doi.org/10.1016/j.cma.2016.09.032 MathSciNetCrossRefGoogle Scholar
  89. 89.
    Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166.  https://doi.org/10.1016/j.compfluid.2016.06.016 MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55:1079–1090.  https://doi.org/10.1007/s00466-014-1090-5 CrossRefzbMATHGoogle Scholar
  91. 91.
    Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211.  https://doi.org/10.1016/j.compfluid.2015.07.013 MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid–structure interaction techniques. Comput Mech 48:247–267.  https://doi.org/10.1007/s00466-011-0571-z MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001.  https://doi.org/10.1142/S0218202512300013 MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255.  https://doi.org/10.1142/S0218202515400072 MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44.  https://doi.org/10.1016/S0065-2156(08)70153-4 MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575.  https://doi.org/10.1002/fld.505 MathSciNetCrossRefzbMATHGoogle Scholar
  97. 97.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900.  https://doi.org/10.1002/fld.1430 CrossRefzbMATHGoogle Scholar
  98. 98.
    Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15:1073–1118.  https://doi.org/10.1002/fld.1650150911 CrossRefGoogle Scholar
  99. 99.
    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid–structure interactions. Int J Numer Methods Fluids 21:933–953.  https://doi.org/10.1002/fld.1650211011 CrossRefzbMATHGoogle Scholar
  100. 100.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332.  https://doi.org/10.1016/S0045-7825(00)00204-8 CrossRefzbMATHGoogle Scholar
  101. 101.
    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027.  https://doi.org/10.1016/j.cma.2004.09.014 MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49.  https://doi.org/10.1007/s00466-008-0261-7 CrossRefzbMATHGoogle Scholar
  103. 103.
    Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142.  https://doi.org/10.1007/s00466-008-0260-8 CrossRefzbMATHGoogle Scholar
  104. 104.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169.  https://doi.org/10.1007/s11831-012-9070-4 MathSciNetCrossRefzbMATHGoogle Scholar
  106. 106.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, London ISBN: 978-0470978771zbMATHCrossRefGoogle Scholar
  107. 107.
    Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854.  https://doi.org/10.1007/s00466-012-0761-3 CrossRefGoogle Scholar
  108. 108.
    Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364.  https://doi.org/10.1007/s00466-013-0880-5 CrossRefzbMATHGoogle Scholar
  109. 109.
    Takizawa K, Tezduyar TE, Boswell C, Tsutsui Y, Montel K (2015) Special methods for aerodynamic-moment calculations from parachute FSI modeling. Comput Mech 55:1059–1069.  https://doi.org/10.1007/s00466-014-1074-5 CrossRefGoogle Scholar
  110. 110.
    Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338.  https://doi.org/10.1142/S0218202513400058 MathSciNetCrossRefzbMATHGoogle Scholar
  111. 111.
    Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220.  https://doi.org/10.1007/s00466-014-1052-y CrossRefGoogle Scholar
  112. 112.
    Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476.  https://doi.org/10.1007/s00466-014-1069-2 MathSciNetCrossRefzbMATHGoogle Scholar
  113. 113.
    Takizawa K, Tezduyar TE, Kolesar R (2015) FSI modeling of the Orion spacecraft drogue parachutes. Comput Mech 55:1167–1179.  https://doi.org/10.1007/s00466-014-1108-z CrossRefzbMATHGoogle Scholar
  114. 114.
    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657.  https://doi.org/10.1007/s00466-011-0614-5 CrossRefzbMATHGoogle Scholar
  115. 115.
    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15.  https://doi.org/10.1007/s00466-013-0888-x CrossRefzbMATHGoogle Scholar
  116. 116.
    Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Methods Eng 21:481–508.  https://doi.org/10.1007/s11831-014-9113-0 MathSciNetCrossRefzbMATHGoogle Scholar
  117. 117.
    Takizawa K (2014) Computational engineering analysis with the new-generation space–time methods. Comput Mech 54:193–211.  https://doi.org/10.1007/s00466-014-0999-z MathSciNetCrossRefzbMATHGoogle Scholar
  118. 118.
    Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406.  https://doi.org/10.1142/S0218202515400126 MathSciNetCrossRefzbMATHGoogle Scholar
  119. 119.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903.  https://doi.org/10.1115/1.4005073 CrossRefzbMATHGoogle Scholar
  120. 120.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760.  https://doi.org/10.1007/s00466-012-0759-x CrossRefzbMATHGoogle Scholar
  121. 121.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134.  https://doi.org/10.1016/j.compfluid.2012.11.008 MathSciNetCrossRefzbMATHGoogle Scholar
  122. 122.
    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778.  https://doi.org/10.1007/s00466-012-0758-y CrossRefzbMATHGoogle Scholar
  123. 123.
    Takizawa K, Tezduyar TE, Kostov N (2014) Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233.  https://doi.org/10.1007/s00466-014-0980-x MathSciNetCrossRefzbMATHGoogle Scholar
  124. 124.
    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971.  https://doi.org/10.1007/s00466-013-0935-7 MathSciNetCrossRefzbMATHGoogle Scholar
  125. 125.
    Takizawa K, Tezduyar TE, Buscher A (2015) Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141.  https://doi.org/10.1007/s00466-014-1095-0 CrossRefGoogle Scholar
  126. 126.
    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486.  https://doi.org/10.1142/S0218202514500250 MathSciNetCrossRefzbMATHGoogle Scholar
  127. 127.
    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686.  https://doi.org/10.1007/s00466-012-0760-4 MathSciNetCrossRefzbMATHGoogle Scholar
  128. 128.
    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073.  https://doi.org/10.1007/s00466-012-0790-y MathSciNetCrossRefzbMATHGoogle Scholar
  129. 129.
    Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045.  https://doi.org/10.1007/s00466-014-1017-1 CrossRefzbMATHGoogle Scholar
  130. 130.
    Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018) Aorta flow analysis and heart valve flow and structure analysis, to appear in a special volume to be published by SpringerGoogle Scholar
  131. 131.
    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time fluid mechanics computation of heart valve models. Comput Mech 54:973–986.  https://doi.org/10.1007/s00466-014-1046-9 CrossRefzbMATHGoogle Scholar
  132. 132.
    Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018) Heart valve flow computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation, lecture notes in applied and computational mechanics. Springer, Berlin. pp 77–99 ISBN: 978-3-319-59547-4Google Scholar
  133. 133.
    Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017) Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188.  https://doi.org/10.1016/j.compfluid.2016.11.012 MathSciNetCrossRefzbMATHGoogle Scholar
  134. 134.
    Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013) Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248.  https://doi.org/10.1142/s0218202513400022 MathSciNetCrossRefzbMATHGoogle Scholar
  135. 135.
    Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977.  https://doi.org/10.1007/s00466-016-1272-4 MathSciNetCrossRefzbMATHGoogle Scholar
  136. 136.
    Takizawa K, Tezduyar TE, Hattori H (2017) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117.  https://doi.org/10.1016/j.compfluid.2016.02.019 MathSciNetCrossRefzbMATHGoogle Scholar
  137. 137.
    Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the space–time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20.  https://doi.org/10.1016/j.compfluid.2016.02.021 MathSciNetCrossRefzbMATHGoogle Scholar
  138. 138.
    Otoguro Y, Takizawa K, Tezduyar TE (2017) Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200.  https://doi.org/10.1016/j.compfluid.2017.04.017 MathSciNetCrossRefzbMATHGoogle Scholar
  139. 139.
    Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries, to appear in a special volume to be published by SpringerGoogle Scholar
  140. 140.
    Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016) Space–time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134.  https://doi.org/10.1016/j.compfluid.2016.05.006 MathSciNetCrossRefzbMATHGoogle Scholar
  141. 141.
    Kuraishi T, Takizawa K, Tezduyar TE (2018) Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation, to appear in a special volume to be published by SpringerGoogle Scholar
  142. 142.
    Takizawa K, Tezduyar TE, Terahara T (2016) Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200.  https://doi.org/10.1016/j.compfluid.2016.05.027 MathSciNetCrossRefzbMATHGoogle Scholar
  143. 143.
    Takizawa K, Tezduyar TE, Kanai T (2017) Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Math Models Methods Appl Sci 27:771–806.  https://doi.org/10.1142/S0218202517500166 MathSciNetCrossRefzbMATHGoogle Scholar
  144. 144.
    Hsu M-C, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833zbMATHCrossRefGoogle Scholar
  145. 145.
    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157–177.  https://doi.org/10.1016/0045-7825(94)00082-4 CrossRefzbMATHGoogle Scholar
  146. 146.
    Takizawa K, Tezduyar TE (2014) Space–time computation techniques with continuous representation in time (ST-C). Comput Mech 53:91–99.  https://doi.org/10.1007/s00466-013-0895-y MathSciNetCrossRefzbMATHGoogle Scholar
  147. 147.
    Osawa Y, Kalro V, Tezduyar T (1999) Multi-domain parallel computation of wake flows. Comput Methods Appl Mech Eng 174:371–391.  https://doi.org/10.1016/S0045-7825(98)00305-3 CrossRefzbMATHGoogle Scholar
  148. 148.
    Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, SwedenzbMATHGoogle Scholar
  149. 149.
    Brenner SC, Scott LR (2002) The mathematical theory of finite element methods, 2nd edn. Springer, BerlinzbMATHCrossRefGoogle Scholar
  150. 150.
    Ern A, Guermond J-L (2004) Theory and practice of finite elements. Springer, BerlinzbMATHCrossRefGoogle Scholar
  151. 151.
    Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284.  https://doi.org/10.1016/0045-7825(84)90157-9 MathSciNetCrossRefzbMATHGoogle Scholar
  152. 152.
    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325.  https://doi.org/10.1016/0045-7825(86)90003-4 CrossRefzbMATHGoogle Scholar
  153. 153.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99zbMATHCrossRefGoogle Scholar
  154. 154.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430.  https://doi.org/10.1016/S0045-7825(00)00211-5 CrossRefzbMATHGoogle Scholar
  155. 155.
    Hughes TJR, Feijóo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method-A paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539–557MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Shakib F, Hughes TJR, Johan Z (1989) A multi-element group preconditionined GMRES algorithm for nonsymmetric systems arising in finite element analysis. Comput Methods Appl Mech Eng 75:415–456zbMATHCrossRefGoogle Scholar
  158. 158.
    Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58:305–328MathSciNetzbMATHCrossRefGoogle Scholar
  159. 159.
    Hughes TJR, Scovazzi G, Tezduyar TE (2010) Stabilized methods for compressible flows. J Sci Comput 43:343–368.  https://doi.org/10.1007/s10915-008-9233-5 MathSciNetCrossRefzbMATHGoogle Scholar
  160. 160.
    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289zbMATHCrossRefGoogle Scholar
  161. 161.
    Wilcox DC (1998) Turbulence modeling for CFD. DCW Industries, La CanadaGoogle Scholar
  162. 162.
    Golshan R, Tejada-Martínez A, Juha M, Bazilevs Y (2015) Large-eddy simulation with near-wall modeling using weakly enforced no-slip boundary conditions. Comput Fluids 118:172–181MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753.  https://doi.org/10.1016/j.cma.2005.08.023 MathSciNetCrossRefzbMATHGoogle Scholar
  164. 164.
    Tezduyar TE, Ganjoo DK (1986) Petrov–Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convection-diffusion problems. Comput Methods Appl Mech Eng 59:49–71.  https://doi.org/10.1016/0045-7825(86)90023-X CrossRefzbMATHGoogle Scholar
  165. 165.
    Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422.  https://doi.org/10.1016/0045-7825(93)90033-T CrossRefzbMATHGoogle Scholar
  166. 166.
    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206.  https://doi.org/10.1016/j.compfluid.2005.02.011 MathSciNetCrossRefzbMATHGoogle Scholar
  167. 167.
    Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632.  https://doi.org/10.1016/j.cma.2005.05.032 MathSciNetCrossRefzbMATHGoogle Scholar
  168. 168.
    Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing. Comput Fluids 36:147–159.  https://doi.org/10.1016/j.compfluid.2005.07.009 CrossRefzbMATHGoogle Scholar
  169. 169.
    Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Comput Mech 38:469–481.  https://doi.org/10.1007/s00466-005-0025-6 CrossRefzbMATHGoogle Scholar
  170. 170.
    Tezduyar TE, Sathe S (2006) Enhanced-discretization selective stabilization procedure (EDSSP). Comput Mech 38:456–468.  https://doi.org/10.1007/s00466-006-0056-7 CrossRefzbMATHGoogle Scholar
  171. 171.
    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364.  https://doi.org/10.1007/s00466-006-0045-x MathSciNetCrossRefzbMATHGoogle Scholar
  172. 172.
    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121–126.  https://doi.org/10.1016/j.compfluid.2005.07.004 CrossRefzbMATHGoogle Scholar
  173. 173.
    Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57:1189–1209.  https://doi.org/10.1002/fld.1743 MathSciNetCrossRefzbMATHGoogle Scholar
  174. 174.
    Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing. Int J Numer Methods Fluids 54:695–706.  https://doi.org/10.1002/fld.1447 MathSciNetCrossRefzbMATHGoogle Scholar
  175. 175.
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608.  https://doi.org/10.1002/fld.1484 MathSciNetCrossRefzbMATHGoogle Scholar
  176. 176.
    Corsini A, Menichini C, Rispoli F, Santoriello A, Tezduyar TE (2009) A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms. J Appl Mech 76:021211.  https://doi.org/10.1115/1.3062967 CrossRefGoogle Scholar
  177. 177.
    Rispoli F, Saavedra R, Menichini F, Tezduyar TE (2009) Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing. J Appl Mech 76:021209.  https://doi.org/10.1115/1.3057496 CrossRefGoogle Scholar
  178. 178.
    Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46:159–167.  https://doi.org/10.1007/s00466-009-0441-0 MathSciNetCrossRefzbMATHGoogle Scholar
  179. 179.
    Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65:254–270.  https://doi.org/10.1002/fld.2451 MathSciNetCrossRefzbMATHGoogle Scholar
  180. 180.
    Corsini A, Rispoli F, Tezduyar TE (2012) Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique. J Appl Mech 79:010910.  https://doi.org/10.1115/1.4005060 CrossRefGoogle Scholar
  181. 181.
    Corsini A, Rispoli F, Sheard AG, Tezduyar TE (2012) Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations. Comput Mech 50:695–705.  https://doi.org/10.1007/s00466-012-0789-4 MathSciNetCrossRefzbMATHGoogle Scholar
  182. 182.
    Kler PA, Dalcin LD, Paz RR, Tezduyar TE (2013) SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. Comput Mech 51:171–185.  https://doi.org/10.1007/s00466-012-0712-z MathSciNetCrossRefzbMATHGoogle Scholar
  183. 183.
    Corsini A, Rispoli F, Sheard AG, Takizawa K, Tezduyar TE, Venturini P (2014) A variational multiscale method for particle-cloud tracking in turbomachinery flows. Comput Mech 54:1191–1202.  https://doi.org/10.1007/s00466-014-1050-0 MathSciNetCrossRefzbMATHGoogle Scholar
  184. 184.
    Rispoli F, Delibra G, Venturini P, Corsini A, Saavedra R, Tezduyar TE (2015) Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and YZβ shock-capturing. Comput Mech 55:1201–1209.  https://doi.org/10.1007/s00466-015-1160-3 MathSciNetCrossRefzbMATHGoogle Scholar
  185. 185.
    Takizawa K, Tezduyar TE, Otoguro Y (2018) Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations. Comput Mech, published online,  https://doi.org/10.1007/s00466-018-1557-x
  186. 186.
    Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput Mech 50:499–511MathSciNetzbMATHCrossRefGoogle Scholar
  187. 187.
    Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2018) Turbocharger turbine and exhaust manifold flow computation with the Space–time variational multiscale method and isogeometric analysis. Comput Fluids, published online.  https://doi.org/10.1016/j.compfluid.2018.05.019
  188. 188.
    Raknes SB, Deng X, Bazilevs Y, Benson DJ, Mathisen KM, Kvamsdal T (2013) Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput Methods Appl Mech Eng 263:127–143MathSciNetzbMATHCrossRefGoogle Scholar
  189. 189.
    Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication), 2nd edn. Springer, New YorkzbMATHCrossRefGoogle Scholar
  190. 190.
    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, LondonzbMATHGoogle Scholar
  191. 191.
    Bischoff M, Wall WA, Bletzinger K-U, Ramm E (2004) Models and finite elements for thin-walled structures. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, solids, structures and coupled problems, Chap. 3, vol 2. Wiley, LondonGoogle Scholar
  192. 192.
    Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca RatonzbMATHCrossRefGoogle Scholar
  193. 193.
    Guo Y, Ruess M (2015) Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures. Comput Methods Appl Mech Eng 284:881–905MathSciNetCrossRefGoogle Scholar
  194. 194.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–75MathSciNetzbMATHCrossRefGoogle Scholar
  195. 195.
    Melbø H, Kvamsdal T (2003) Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing. Comput Methods Appl Mech Eng 192:613–633MathSciNetzbMATHCrossRefGoogle Scholar
  196. 196.
    van Brummelen EH, Garg VV, Prudhomme S, van der Zee KG (2011) Flux evaluation in primal and dual boundary-coupled problems. J Appl Mech 79:010904CrossRefGoogle Scholar
  197. 197.
    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, pp 7–24Google Scholar
  198. 198.
    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36.  https://doi.org/10.1109/2.237441 CrossRefzbMATHGoogle Scholar
  199. 199.
    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94.  https://doi.org/10.1016/0045-7825(94)00077-8 CrossRefzbMATHGoogle Scholar
  200. 200.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130.  https://doi.org/10.1007/BF02897870 CrossRefzbMATHGoogle Scholar
  201. 201.
    Tezduyar T (2001) Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces. In: Proceedings of the ASME symposium on fluid-physics and heat transfer for macro- and micro-scale gas–liquid and phase-change flows (CD-ROM). ASME Paper IMECE2001/HTD-24206, ASME, New YorkGoogle Scholar
  202. 202.
    Tezduyar TE (2003) Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows, In: Hafez MM (ed) Numerical simulations of incompressible flows. World Scientific, New Jersey, pp 221–239.  https://doi.org/10.1142/9789812796837_0013 zbMATHCrossRefGoogle Scholar
  203. 203.
    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032.  https://doi.org/10.1016/j.cma.2003.12.046 CrossRefzbMATHGoogle Scholar
  204. 204.
    Tezduyar TE, Sathe S, Senga M, Aureli L, Stein K, Griffin B (2005) Finite element modeling of fluid–structure interactions with space–time and advanced mesh update techniques. In: Proceedings of the 10th international conference on numerical methods in continuum mechanics (CD-ROM), Zilina, SlovakiaGoogle Scholar
  205. 205.
    Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int J Numer Methods Eng 15:1862–1867MathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    Rodrigues O (1840) Des lois geometriques qui regissent les deplacements dun systeme solide dans lespace, et de la variation des coordonnees provenant de ces deplacements consideres independamment des causes qui peuvent les produire. J Math 5:380–440Google Scholar
  207. 207.
    Gayen B, Sarkar S, Taylor JR (2010) Large eddy simulation of a stratified boundary layer under an oscillatory current. J Fluid Mech 643:233–266zbMATHCrossRefGoogle Scholar
  208. 208.
    Gayen B, Sarkar S (2011) Direct and large-eddy simulations of internal tide generation at a near-critical slope. J Fluid Mech 681:48–79MathSciNetzbMATHCrossRefGoogle Scholar
  209. 209.
    Beare R, Macvean M, Holtslag A, Cuxart J, Esau I, Golaz J-C, Jimenez M, Khairoutdinov M, Kosovic B, Lewellen D, Lund T, Lundquist J, Mccabe A, Moene A, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Bound-Layer Meteor 118:247–272CrossRefGoogle Scholar
  210. 210.
    Griffith DT, Ashwill TD (2011) The sandia 100-meter all-glass baseline wind turbine blade: Snl100-00, SANDIA REPORT, SAND2011-3779Google Scholar
  211. 211.
    Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development, Technical Report NREL/TP-500-38060, National Renewable Energy LaboratoryGoogle Scholar
  212. 212.
    Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for prebending of wind turbine blades. Int J Numer Methods Eng 89:323–336zbMATHCrossRefGoogle Scholar
  213. 213.
  214. 214.
    Hill N, Dominy R, Ingram G, Dominy J (2009) Darrieus turbines: the physics of self-starting. Proc IMechE Part A: J Power Energy 223(1):21–29CrossRefGoogle Scholar
  215. 215.
    Baker JR (1983) Features to aid or enable self starting of pitched low solidity vertical axis wind turbines. J Wind Eng Ind Aerodyn 15:369–380CrossRefGoogle Scholar
  216. 216.
    Osawa Y, Tezduyar T (1999) A multi-domain method for 3D computation of wake flow behind a circular cylinder. Comput Fluid Dyn J 8:296–308Google Scholar
  217. 217.
    Tezduyar T, Osawa Y (1999) Methods for parallel computation of complex flow problems. Parallel Comput 25:2039–2066.  https://doi.org/10.1016/S0167-8191(99)00080-0 MathSciNetCrossRefGoogle Scholar
  218. 218.
    Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:705–716.  https://doi.org/10.1016/S0045-7825(01)00310-3 CrossRefzbMATHGoogle Scholar
  219. 219.
    Tezduyar T, Osawa Y (2001) Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726.  https://doi.org/10.1016/S0045-7825(01)00311-5 CrossRefzbMATHGoogle Scholar
  220. 220.
    Jalali M, Rapaka N, Sarkar S (2014) Tidal flow over topography: effect of excursion number on wave energetics and turbulence. J Fluid Mech 750:259–283CrossRefGoogle Scholar
  221. 221.
    Gohari S, Sarkar S (2016) Tidal flow over topography: effect of excursion number on wave energetics and turbulence. Bound-Layer Meteorol, Accepted for publicationGoogle Scholar
  222. 222.
    Bazilevs Y, Korobenko A, Deng X, Yan J (2016) Fluid–structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010CrossRefGoogle Scholar
  223. 223.
    Bravo R, Tullis S, Ziada S (2007) Performance testing of a small vertical-axis wind turbine. In: Proceedings of the 21st Canadian Congress of applied mechanics, pp 470–471Google Scholar
  224. 224.
    McLaren K, Tullis S, Ziada S (2012) Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine. Wind Energy, 15: 349–361. Published online.  https://doi.org/10.1002/we.472 CrossRefGoogle Scholar
  225. 225.
    Dabiri JO (2011) Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J Renew Sustain Energy 3:043104CrossRefGoogle Scholar
  226. 226.

Copyright information

© CIMNE, Barcelona, Spain 2018

Authors and Affiliations

  • Artem Korobenko
    • 1
  • Yuri Bazilevs
    • 2
  • Kenji Takizawa
    • 3
  • Tayfun E. Tezduyar
    • 4
    • 5
  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.School of EngineeringBrown UniversityProvidenceUSA
  3. 3.Department of Modern Mechanical EngineeringWaseda UniversityTokyoJapan
  4. 4.Mechanical EngineeringRice UniversityHoustonUSA
  5. 5.Faculty of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations