Simulation of the Mechanical Response of Thin-Ply Composites: From Computational Micro-Mechanics to Structural Analysis

  • Albertino ArteiroEmail author
  • Giuseppe Catalanotti
  • José Reinoso
  • Peter Linde
  • Pedro P. Camanho
Original Paper


This paper provides an overview of the current approaches to predict damage and failure of composite laminates at the micro-(constituent), meso-(ply), and macro-(structural) levels, and their application to understand the underlying physical phenomena that govern the mechanical response of thin-ply composites. In this context, computational micro-mechanics is used in the analysis of ply thickness effects, with focus on the prediction of in-situ strengths. At the mesoscale, to account for ply thickness effects, theoretical results are presented related with the implementation of failure criteria that account for the in-situ strengths. Finally, at the structural level, analytical and computational fracture approaches are proposed to predict the strength of composite structures made of thin plies. While computational mechanics models at the lower (micro- and meso-) length-scales already show a sufficient level of maturity, the strength prediction of thin-ply composite structures subjected to complex loading scenarios is still a challenge. The former (micro- and meso-models) provide already interesting bases for in-silico material design and virtual testing procedures, with most of current and future research focused on reducing the computational cost of such strategies. In the latter (structural level), analytical Finite Fracture Mechanics models—when closed-form solutions can be used, or the phase field approach to brittle fracture seem to be the most promising techniques to predict structural failure of thin-ply composite structures.



This work was funded by AIRBUS under project 2genComp—second generation Composites; the authors gratefully acknowledge the support provided by AIRBUS. The first author would also like to thank the financial support provided by FCT–Fundação para a Ciência e a Tecnologia through National Funds in the scope of project MITP-TB/PFM/0005/2013. The third author is grateful to the support of the research projects funded by the Spanish Ministry of Economy and Competitiveness/FEDER (Projects DPI2012-37187, MAT2015-71036-P and MAT2015-71309-P) and the Andalusian Government (Projects of Excellence No. P11-TEP-7093 and P12-TEP-1050), and to the financial support of the European Research Council (ERC), Grant No. 306622 through the ERC Starting Grant “Multi-field and multi-scale Computational Approach to Design and Durability of PhotoVoltaic Modules”—CA2PVM. The last author gratefully acknowledges the funding of Project NORTE-01-0145-FEDER-000022–SciTech–Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), Fundo Europeu de Desenvolvimento Regional (FEDER).

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Abdalla MM, Setoodeh S, Gürdal Z (2007) Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Compos Struct 81:283–291CrossRefGoogle Scholar
  2. 2.
    Abisset E, Daghia F, Ladevèze P (2011) On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates. Compos Part A Appl Sci 42:1515–1524CrossRefGoogle Scholar
  3. 3.
    Aboudi J, Arnold SM, Bednarcyk BA (2013) Micromechanics of composite materials: a generalized multiscale analysis approach. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Achard V, Bouvet C, Castanié B, Chirol C (2014) Discrete ply modelling of open hole tensile tests. Compos Struct 113:369–381CrossRefGoogle Scholar
  5. 5.
    Amacher R, Cugnoni J, Botsis J, Sorensen L, Smith W, Dransfeld C (2014) Thin ply composites: experimental characterization and modeling of size-effects. Compos Sci Technol 101:121–132CrossRefGoogle Scholar
  6. 6.
    Areias P, Rabczuk T, Camanho PP (2013) Initially rigid cohesive laws and fracture based on edge rotations. Comput Mech 52:931–947zbMATHCrossRefGoogle Scholar
  7. 7.
    Arteiro A (2016) Structural mechanics of thin-ply laminated composites. Ph.D. thesis, Faculdade de Engenharia, Universidade do Porto, PortoGoogle Scholar
  8. 8.
    Arteiro A, Catalanotti G, Xavier J, Camanho PP (2013a) Notched response of non-crimp fabric thin-ply laminates. Compos Sci Technol 79:97–114CrossRefGoogle Scholar
  9. 9.
    Arteiro A, Catalanotti G, Xavier J, Camanho PP (2013b) Notched response of non-crimp fabric thin-ply laminates: analysis methods. Compos Sci Technol 88:165–171CrossRefGoogle Scholar
  10. 10.
    Arteiro A, Catalanotti G, Melro AR, Linde P, Camanho PP (2014a) Micro-mechanical analysis of the in situ effect in polymer composite laminates. Compos Struct 116:827–840CrossRefGoogle Scholar
  11. 11.
    Arteiro A, Catalanotti G, Xavier J, Camanho PP (2014b) Large damage capability of non-crimp fabric thin-ply laminates. Compos Part A Appl Sci 63:110–122CrossRefGoogle Scholar
  12. 12.
    Arteiro A, Catalanotti G, Melro AR, Linde P, Camanho PP (2015) Micro-mechanical analysis of the effect of ply thickness on the transverse compressive strength of polymer composites. Compos Part A Appl Sci 79:127–137CrossRefGoogle Scholar
  13. 13.
    Arteiro A, Catalanotti G, Xavier J, Linde P, Camanho PP (2017) Effect of tow thickness on the structural response of aerospace-grade spread-tow fabrics. Compos Struct 179:208–223CrossRefGoogle Scholar
  14. 14.
    Arteiro A, Catalanotti G, Xavier J, Linde P, Camanho PP (2018) A strategy to improve the structural performance of non-crimp fabric thin-ply laminates. Compos Struct 188:438–449CrossRefGoogle Scholar
  15. 15.
    Aymerich F, Pani C, Priolo P (2007) Damage response of stitched cross-ply laminates under impact loadings. Eng Fract Mech 74:500–514CrossRefGoogle Scholar
  16. 16.
    Bäcklund J, Aronsson CG (1986) Tensile fracture of laminates with holes. J Compos Mater 20:259–286CrossRefGoogle Scholar
  17. 17.
    Bai X, Bessa MA, Melro AR, Camanho PP, Guo L, Liu WK (2015) High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites. Compos Struct 134:132–141CrossRefGoogle Scholar
  18. 18.
    Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16(93):155–177Google Scholar
  19. 19.
    Belytschko T, Song JH (2010) Coarse-graining of multiscale crack propagation. Int J Numer Methods Eng 81:537–563zbMATHGoogle Scholar
  20. 20.
    Benzeggagh M, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56:439–449CrossRefGoogle Scholar
  21. 21.
    Berthelot JM (2003) Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading. Appl Mech Rev 56(1):111–147CrossRefGoogle Scholar
  22. 22.
    Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449zbMATHCrossRefGoogle Scholar
  23. 23.
    Boniface L, Smith PA, Bader MG (1997) Transverse ply cracking in cross-ply CFRP laminates—initiation or propagation controlled? J Compos Mater 31(11):1080–1112CrossRefGoogle Scholar
  24. 24.
    Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Method Appl Mech 217–220:77–95MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1–3):5–148MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Bouvet C, Rivallant S, Barrau JJ (2012) Low velocity impact modeling in composite laminates capturing permanent indentation. Compos Sci Technol 72:1977–1988CrossRefGoogle Scholar
  27. 27.
    Buryachenko VA, Pagano NJ, Kim RY, Spowart JE (2003) Quantitative description and numerical simulation of random microstructures of composites and their effective elastic moduli. Int J Solids Struct 40:47–72zbMATHCrossRefGoogle Scholar
  28. 28.
    Camanho PP, Arteiro A (2017) Analysis models for polymer composites across different length scales. In: Fifty years of progress and achievement of the science, development, and applications. Springer International Publishing, Cham, chap 9, pp 199–279Google Scholar
  29. 29.
    Camanho PP (1999) Application of numerical methods to the strength prediction of mechanically fastened joints in composite laminates. Ph.D. thesis, Centre for Composite Materials, Imperial College of Science, Technology and Medicine, LondonGoogle Scholar
  30. 30.
    Camanho PP, Catalanotti G (2011) On the relation between the mode I fracture toughness of a composite laminate and that of a \(0^\circ\) ply: analytical model and experimental validation. Eng Fract Mech 78:2535–2546CrossRefGoogle Scholar
  31. 31.
    Camanho PP, Lambert M (2006) A design methodology for mechanically fastened joints in laminated composite materials. Compos Sci Technol 66:3004–3020CrossRefGoogle Scholar
  32. 32.
    Camanho PP, Dávila CG, de Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415–1438CrossRefGoogle Scholar
  33. 33.
    Camanho PP, Dávila CG, Pinho ST, Iannucci L, Robinson P (2006) Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos Part A Appl Sci 37:165–176CrossRefGoogle Scholar
  34. 34.
    Camanho PP, Maimí P, Dávila CG (2007) Prediction of size effects in notched laminates using continuum damage mechanics. Compos Sci Technol 67:2715–2727CrossRefGoogle Scholar
  35. 35.
    Camanho PP, Arteiro A, Turon A, Costa J, Guillamet G (2012a) Structural integrity of thin-ply laminates. JEC Compos Mag 71:49–50Google Scholar
  36. 36.
    Camanho PP, Erçin GH, Catalanotti G, Mahdi S, Linde P (2012b) A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Compos Part A Appl Sci 43:1219–1225CrossRefGoogle Scholar
  37. 37.
    Camanho PP, Bessa MA, Catalanotti G, Vogler M, Rolfes R (2013) Modeling the inelastic deformation and fracture of polymer composites—Part II: smeared crack model. Mech Mater 59:36–49CrossRefGoogle Scholar
  38. 38.
    Camanho PP, Arteiro A, Catalanotti G, Melro AR, Vogler M (2015a) Three-dimensional invariant-based failure criteria for transversely isotropic fibre-reinforced composites. In: Camanho PP, Hallett SR (eds) Numerical modelling of failure in advanced composite materials. Woodhead Publishing, Cambridge, pp 111–150CrossRefGoogle Scholar
  39. 39.
    Camanho PP, Arteiro A, Melro AR, Catalanotti G, Vogler M (2015b) Three-dimensional invariant-based failure criteria for fibre-reinforced composites. Int J Solids Struct 55:92–107CrossRefGoogle Scholar
  40. 40.
    Canal LP, González C, Molina-Aldareguía JM, Segurado J, Llorca J (2012a) Application of digital image correlation at the microscale in fiber-reinforced composites. Compos Part A Appl Sci 43:1630–1638CrossRefGoogle Scholar
  41. 41.
    Canal LP, González C, Segurado J, Llorca J (2012b) Intraply fracture of fiber reinforced composites: microscopic mechanisms and modeling. Compos Sci Technol 72:1223–1232CrossRefGoogle Scholar
  42. 42.
    Carollo V, Reinoso J, Paggi M (2017) A 3D finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model. Compos Struct 182:636–651CrossRefGoogle Scholar
  43. 43.
    Carollo V, Reinoso J, Paggi M (2018) Modeling complex crack paths in ceramic laminates: a novel variational framework combining the phase field method of fracture and the cohesive zone model. J Eur Ceram Soc. CrossRefGoogle Scholar
  44. 44.
    Carrere N, Laurin F, Maire JF (2012) Micromechanical-based hybrid mesoscopic 3D approach for non-linear progressive failure analysis of composite structures. J Compos Mater 46(19–20):2389–2415CrossRefGoogle Scholar
  45. 45.
    Catalanotti G (2016) On the generation of RVE-based models of composites reinforced with long fibres or spherical particles. Compos Struct 138:84–95CrossRefGoogle Scholar
  46. 46.
    Catalanotti G, Camanho PP (2013) A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates. Compos Sci Technol 76:69–76CrossRefGoogle Scholar
  47. 47.
    Catalanotti G, Camanho PP, Marques AT (2013) Three-dimensional failure criteria for fiber-reinforced laminates. Compos Struct 95:63–79CrossRefGoogle Scholar
  48. 48.
    Catalanotti G, Arteiro A, Hayati M, Camanho PP (2014) Determination of the mode I crack resistance curve of polymer composites using the size-effect law. Engng Fract Mech 118:49–65CrossRefGoogle Scholar
  49. 49.
    Chang FK, Chen MH (1987) The in situ ply shear strength distribution in graphite/epoxy laminated composites. J Compos Mater 21:708–733CrossRefGoogle Scholar
  50. 50.
    Chang KY, Liu S, Chang FK (1991) Damage tolerance of laminated composites containing an open hole subjected to tensile loadings. J Compos Mater 25:274–301CrossRefGoogle Scholar
  51. 51.
    Chen BY, Pinho ST, Carvalho NVD, Baiz PM, Tay TE (2014) A floating node method for the modelling of discontinuities in composites. Eng Fract Mech 127:104–134CrossRefGoogle Scholar
  52. 52.
    Chen BY, Tay TE, Pinho ST, Tan VBC (2016) Modelling the tensile failure of composites with the floating node method. Comput Method Appl Mech 308:414–442MathSciNetCrossRefGoogle Scholar
  53. 53.
    Clayton JD, Knap J (2015) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169CrossRefGoogle Scholar
  54. 54.
    CMH-17-1G (2012) Composite Materials Handbook, vol 1 of 6: polymer matrix composites: guidelines for characterization of structural materials. SAE InternationalGoogle Scholar
  55. 55.
    CMH-17-3G (2012) Composite materials handbook, vol 3 of 6: polymer matrix composites: materials usage, design and analysis. SAE InternationalGoogle Scholar
  56. 56.
    Cornetti P, Pugno N, Carpinteri A, Taylor D (2006) Finite fracture mechanics: a coupled stress and energy failure criterion. Eng Fract Mech 73:2021–2033CrossRefGoogle Scholar
  57. 57.
    Cousigné O, Moncayo D, Coutellier D, Camanho P, Naceur H, Hampel S (2013) Development of a new nonlinear numerical material model for woven composite materials accounting for permanent deformation and damage. Compos Struct 106:601–614CrossRefGoogle Scholar
  58. 58.
    Cousigné O, Moncayo D, Coutellier D, Camanho P, Naceur H (2014) Numerical modeling of nonlinearity, plasticity and damage in CFRP-woven composites for crash simulations. Compos Struct 115:75–88CrossRefGoogle Scholar
  59. 59.
    Cuntze RG (2006) Efficient 3D and 2D failure conditions for UD laminae and their application within the verification of the laminate design. Compos Sci Technol 66:1081–1096CrossRefGoogle Scholar
  60. 60.
    Czél G, Wisnom MR (2013) Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg. Compos Part A Appl Sci 52:23–30CrossRefGoogle Scholar
  61. 61.
    Daniel IM, Ishai O (2008) Engineering mechanics of composite materials. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Dávila CG, Camanho PP (2003) Analysis of the effects of residual strains and defects on skin/stiffner debonding using decohesion elements. Tech. Rep. AIAA Paper 2003-1465, NASA Langley Research Center, Hampton, VirginiaGoogle Scholar
  63. 63.
    Dávila CG, Rose CA, Iarve EV (2014) Modeling fracture and complex crack networks in laminated composites. In: Mantič V (ed) Mathematical Methods and Models in Composites, Computational and Experimental Methods in Structures, Aliabadi FMH, Series editor, vol 5, Imperial College Press, London, chap 8, pp 297–347zbMATHGoogle Scholar
  64. 64.
    Dávila CG, Camanho PP, Rose CA (2005) Failure criteria for FRP laminates. J Compos Mater 39(4):323–345CrossRefGoogle Scholar
  65. 65.
    Dávila CG, Camanho PP, Turon A (2008) Effective simulation of delamination in aeronautical structures using shells and cohesive elements. J Aircr 45(2):663–672CrossRefGoogle Scholar
  66. 66.
    Diao H, Bismarck A, Robinson P, Wisnom MR (2014) Production of continuous intermingled CF/GF hybrid composite via fibre tow spreading technology. In: Proceedings of ECCM16, Seville, pp 1–8Google Scholar
  67. 67.
    Dvorak GJ, Laws N (1987) Analysis of progressive matrix cracking in composite laminates II. First ply failure. J Compos Mater 21:309–329CrossRefGoogle Scholar
  68. 68.
    Erçin GH, Camanho PP, Xavier J, Catalanotti G, Mahdi S, Linde P (2013) Size effects on the tensile and compressive failure of notched composite laminates. Compos Struct 96:736–744CrossRefGoogle Scholar
  69. 69.
    Eriksson I, Aronsson CG (1990) Strength of tensile loaded graphite epoxy laminates containing cracks, open and filled holes. J Compos Mater 24:456–482CrossRefGoogle Scholar
  70. 70.
    Feder J (1980) Random sequential adsorption. J Theor Biol 87:237–254CrossRefGoogle Scholar
  71. 71.
    Flaggs DL (1985) Prediction of tensile matrix failure in composite laminates. J Compos Mater 19:29–50CrossRefGoogle Scholar
  72. 72.
    Flaggs DL, Kural MH (1982) Experimental determination of the in situ transverse lamina strength in graphite/epoxy laminates. J Compos Mater 16:103–116CrossRefGoogle Scholar
  73. 73.
    Fuller J, Wisnom MR (2015a) Exploration of the potential for pseudo-ductility in thin ply CFRP angle-ply laminates via an analytical method. Compos Sci Technol 112:8–15CrossRefGoogle Scholar
  74. 74.
    Fuller J, Wisnom MR (2015b) Pseudo-ductility and damage suppression in thin ply CFRP angle-ply laminates. Compos Part A Appl Sci 69:64–71CrossRefGoogle Scholar
  75. 75.
    Furtado C, Arteiro A, Catalanotti G, Xavier J, Camanho PP (2016) Selective ply-level hybridisation for improved notched response of composite laminates. Compos Struct 145:1–14CrossRefGoogle Scholar
  76. 76.
    Furtado C, Arteiro A, Bessa MA, Wardle BL, Camanho PP (2017) Prediction of size effects in open-hole laminates using only the Young’s modulus, the strength, and the \({\cal{R}}\)-curve of the \(0^\circ\) ply. Compos Part A Appl Sci 101:306–317CrossRefGoogle Scholar
  77. 77.
    Gan KW, Wisnom MR, Hallett SR (2014) Effect of high through-thickness compressive stress on fibre direction tensile strength of carbon/epoxy composite laminates. Compos Sci Technol 90:1–8CrossRefGoogle Scholar
  78. 78.
    García IG, Mantič V, Blázquez A, París F (2014) Transverse crack onset and growth in cross-ply \([0/90]_s\) laminates under tension. Application of a coupled stress and energy criterion. Int J Solids Struct 51:3844–3856CrossRefGoogle Scholar
  79. 79.
    Garrett KW, Bailey JE (1977) Multiple transverse fracture in \(90^\circ\) cross-ply laminates of a glass fibre-reinforced polyester. J Mater Sci 12:157–168CrossRefGoogle Scholar
  80. 80.
    Gay D, Hoa SV (2007) Composite materials: design and applications, 2nd edn. CRC Press, Taylor and Francis Group, Boca RatonCrossRefGoogle Scholar
  81. 81.
    González C, Llorca J (2007) Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos Sci Technol 67:2795–2806CrossRefGoogle Scholar
  82. 82.
    González EV, Maimí P, Sainz de Aja JR, Cruz P, Camanho PP (2014) Effects of interply hybridization on the damage resistance and tolerance of composite laminates. Compos Struct 108:319–331CrossRefGoogle Scholar
  83. 83.
    Guillamet G, Turon A, Costa J, Renart J, Linde P, Mayugo JA (2014) Damage occurrence at edges of non-crimp-fabric thin-ply laminates under off-axis uniaxial loading. Compos Sci Technol 98:44–50CrossRefGoogle Scholar
  84. 84.
    Guillamet G, Turon A, Costa J, Linde P (2016) A quick procedure to predict free-edge delamination in thin-ply laminates under tension. Eng Fract Mech 168:28–39CrossRefGoogle Scholar
  85. 85.
    Gültekin O, Dal H, Holzapfel GA (2016) A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput Method Appl Mech 312:542–566MathSciNetCrossRefGoogle Scholar
  86. 86.
    Hahn HT, Tsai SW (1973) Nonlinear elastic shear behavior of unidirectional composite laminae. J Compos Mater 7(1):102–118CrossRefGoogle Scholar
  87. 87.
    Hashin Z (1980) Failure criteria for unidirectional fibre composites. J Appl Mech 47:329–334CrossRefGoogle Scholar
  88. 88.
    Herráez M, Mora D, Naya F, Lopes CS, González C, Llorca J (2015) Transverse cracking of cross-ply laminates: a computational micromechanics perspective. Compos Sci Technol 110:196–204CrossRefGoogle Scholar
  89. 89.
    Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase field approach to fracture. Int J Numer Methods Eng 99(12):906–924MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Hine PJ, Duckett RA, Kaddour AS, Hinton MJ, Wells GM (2005) The effect of hydrostatic pressure on the mechanical properties of glass fibre/epoxy unidirectional composites. Compos Part A Appl Sci 36:279–289CrossRefGoogle Scholar
  91. 91.
    Hinton MJ, Kaddour AS, Soden PD (2004a) A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence. Compos Sci Technol 64:549–558CrossRefGoogle Scholar
  92. 92.
    Hinton MJ, Kaddour AS, Soden PD (2004b) Evaluation of failure prediction in composite laminates: background to ‘part C’ of the exercise. Compos Sci Technol 64:321–327CrossRefGoogle Scholar
  93. 93.
    Hobbiebrunken T, Hojo M, Adachi T, De Jong C, Fiedler B (2006) Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments. Compos Part A Appl Sci 37:2248–2256CrossRefGoogle Scholar
  94. 94.
    Iarve EV, Gurvich MR, Mollenhauer DH, Rose CA, Dávila CG (2011) Mesh-independent matrix cracking and delamination modeling in laminated composites. Int J Numer Methods Eng 88:749–773zbMATHCrossRefGoogle Scholar
  95. 95.
    Jacques S, De Baere I, Van Paepegem W (2014) Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites. Compos Sci Technol 92:41–54CrossRefGoogle Scholar
  96. 96.
    Jalalvand M, Wisnom MR, Hosseini-Toudeshky H, Mohammadi B (2014) Experimental and numerical study of oblique transverse cracking in cross-ply laminates under tension. Compos Part A Appl Sci 67:140–148CrossRefGoogle Scholar
  97. 97.
    Jiang WG, Hallett SR, Green BG, Wisnom MR (2007) A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int J Numer Methods Eng 69:1982–1995zbMATHCrossRefGoogle Scholar
  98. 98.
    Jodrey WS, Tory EM (1985) Computer simulation of close random packing of equal spheres. Phys Rev A 32(4):2347CrossRefGoogle Scholar
  99. 99.
    Kawabe K (2008) New spreading technology for carbon fiber tow and its application to composite materials. Sen-i Gakkaishi 64(8):262–267 in JapaneseGoogle Scholar
  100. 100.
    Kawabe K, Matsuo T, Maekawa Z (1998) New technology for opening various reinforcing fiber tows. J Soc Mat Sci Jpn 47(7):727–734 in JapaneseCrossRefGoogle Scholar
  101. 101.
    Kawabe K, Sasayama H, Kageyama K, Ogata N (2008) Effect of ply thickness on compressive properties in multidirectionally laminated composites. J Jpn Soc Compos Mater 34:173–181 in JapaneseCrossRefGoogle Scholar
  102. 102.
    Klinkel S, Wagner W (1997) A geometrical nonlinear brick element based on the EAS-method. Int J Numer Methods Eng 40:4529–4545zbMATHCrossRefGoogle Scholar
  103. 103.
    Koerber H, Camanho PP (2011) High strain rate characterisation of unidirectional carbonepoxy IM7-8552 in longitudinal compression. Compos Part A Appl Sci 42:462–470CrossRefGoogle Scholar
  104. 104.
    Koerber H, Xavier J, Camanho PP (2010) High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech Mater 42:1004–1019CrossRefGoogle Scholar
  105. 105.
    Laurin F, Carrere N, Huchette C, Maire JF (2012) A multiscale hybrid approach for damage and final failure predictions of composite structures. J Compos Mater 47(20–21):2713–2747Google Scholar
  106. 106.
    Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A Solid 21:61–72zbMATHCrossRefGoogle Scholar
  107. 107.
    Ling D, Yang Q, Cox B (2009) An augmented finite element method for modeling arbitrary discontinuities in composites. Int J Fract 156:53–73zbMATHCrossRefGoogle Scholar
  108. 108.
    Liu G, Li Q, Msekh MA, Zuo Z (2016) Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model. Comput Mater Sci 121:35–47CrossRefGoogle Scholar
  109. 109.
    Lopes CS, Gürdal Z, Camanho PP (2008) Variable-stiffness composite panels: buckling and first-ply failure improvements over straight-fibre laminates. Comput Struct 86:897–907CrossRefGoogle Scholar
  110. 110.
    Lopes CS, Sábada S, González C, Llorca J, Camanho PP (2016) Physically-sound simulation of low-velocity impact on fiber reinforced laminates. Int J Impact Eng 92:3–17CrossRefGoogle Scholar
  111. 111.
    Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007a) A continuum damage model for composite laminates: Part I—constitutive model. Mech Mater 39:897–908CrossRefGoogle Scholar
  112. 112.
    Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007b) A continuum damage model for composite laminates: Part II—computational implementation and validation. Mech Mater 39:909–919CrossRefGoogle Scholar
  113. 113.
    Maimí P, González EV, Camanho PP (2014) Comment to the paper ’Analysis of progressive matrix cracking in composite laminates II. First ply failure’. J Compos Mater 48(9):1139–1141CrossRefGoogle Scholar
  114. 114.
    Mantič V (2009) Interface crack onset at a circular cylindrical inclusion under a remote transverse tension. Application of a coupled stress and energy criterion. Int J Solids Struct 46(6):1287–1304zbMATHCrossRefGoogle Scholar
  115. 115.
    Mar JW, Lin KY (1977) Fracture mechanics correlation for tensile failure of filamentary composites with holes. J Aircraft 14:703–704CrossRefGoogle Scholar
  116. 116.
    Martin E, Leguillon D, Carrère N (2012) A coupled strength and toughness criterion for the prediction of the open hole tensile strength of a composite plate. Int J Solids Struct 49:3915–3922CrossRefGoogle Scholar
  117. 117.
    Mayugo JA, Camanho PP, Maimí P, Dávila CG (2010) Analytical modelling of transverse matrix cracking of \(\{\pm \theta /90^n\}^s\) composite laminates under multiaxial loading. Mech Adv Mater Struc 17:237–245CrossRefGoogle Scholar
  118. 118.
    Melro AR, Camanho PP, Pinho ST (2008) Generation of random distribution of fibres in long-fibre reinforced composites. Compos Sci Technol 68:2092–2102CrossRefGoogle Scholar
  119. 119.
    Melro AR, Camanho PP, Pinho ST (2012a) Influence of geometrical parameters on the elastic response of unidirectional composite materials. Compos Struct 94:3223–3231CrossRefGoogle Scholar
  120. 120.
    Melro AR, Camanho PP, Pires FMA, Pinho ST (2012b) Numerical simulation of the non-linear deformation of 5-harness satin weaves. Comp Mater Sci 61:116–126CrossRefGoogle Scholar
  121. 121.
    Melro AR, Camanho PP, Pires FMA, Pinho ST (2013a) Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I—constitutive modelling. Int J Solids Struct 50:1897–1905CrossRefGoogle Scholar
  122. 122.
    Melro AR, Camanho PP, Pires FMA, Pinho ST (2013b) Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II—micromechanical analyses. Int J Solids Struct 50:1906–1915CrossRefGoogle Scholar
  123. 123.
    Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Method Appl M 199(45–48):2765–2778MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311MathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    Miehe C, Schänzel LM, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Method Appl Mech 294:449–485MathSciNetCrossRefGoogle Scholar
  126. 126.
    Mozaffari N, Voyiadjis GZ (2015) Phase field based nonlocal anisotropic damage mechanics model. Phys D 308:11–25MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    Nash NH, Young TM, McGrail PT, Stanley WF (2015) Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites: a review. Mater Des 85:582–597CrossRefGoogle Scholar
  128. 128.
    Nguyen TT, Yvonnet J, Bornert M, Chateau C, Sab K, Romani R, Le Roy R (2016) On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int J Fract 197(2):213–226CrossRefGoogle Scholar
  129. 129.
    Ogihara S, Takeda N, Kobayashi A (1997) Experimental characterization of microscopic failure process under quasi-static tension in interleaved and toughness-improved CFRP cross-ply laminates. Compos Sci Technol 57:267–275CrossRefGoogle Scholar
  130. 130.
    Oh JH, Jin KK, Ha SK (2006) Interfacial strain distribution of a unidirectional composite with randomly distributed fibers under transverse loading. J Compos Mater 40(9):759–778CrossRefGoogle Scholar
  131. 131.
    Okereke MI, Akpoyomare OI (2013) A virtual framework for prediction of full-field elastic response of unidirectional composites. Comput Mater Sci 70:82–99CrossRefGoogle Scholar
  132. 132.
    Olsson R (2015) Analytical prediction of damage due to large mass impact on thin ply composites. Compos Part A Appl Sci 72:184–191CrossRefGoogle Scholar
  133. 133.
    Paggi M, Reinoso J (2017) Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model. Comput Method Appl Mech 321:145–172MathSciNetCrossRefGoogle Scholar
  134. 134.
    Paggi M, Corrado M, Reinoso J (2004) Fracture of solar-grade anisotropic polycrystalline silicon: a combined phase fieldcohesive zone model approach. Comput Method Appl Mech 330:123–148CrossRefGoogle Scholar
  135. 135.
    Parvizi A, Bailey JE (1978) On multiple transverse cracking in glass fibre epoxy cross-ply laminates. J Mater Sci 13:2131–2136CrossRefGoogle Scholar
  136. 136.
    Parvizi A, Garrett KW, Bailey JE (1978) Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates. J Mater Sci 13:195–201CrossRefGoogle Scholar
  137. 137.
    Pinho ST, Iannucci L, Robinson P (2006) Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: development. Compos Part A Appl Sci 37:63–73CrossRefGoogle Scholar
  138. 138.
    Pinho ST, Iannucci L, Robinson P (2012) Material and structural response of polymer-matrix fibre-reinforced composites. J Compos Mater 46(19–20):2313–2341CrossRefGoogle Scholar
  139. 139.
    Puck A, Schürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58:1045–1067CrossRefGoogle Scholar
  140. 140.
    Puck A, Schürmann H (2002) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 62:1633–1662CrossRefGoogle Scholar
  141. 141.
    Pyrz R (1994) Quantitative description of the microstructure of composites. Part I: morphology of unidirectional composite systems. Compos Sci Technol 50(2):197–208CrossRefGoogle Scholar
  142. 142.
    Reinoso J, Blázquez A (2016) Application and finite element implementation of 7-parameter shell element for geometrically nonlinear analysis of layered CFRP composites. Compos Struct 139:263–276CrossRefGoogle Scholar
  143. 143.
    Reinoso J, Arteiro A, Paggi M, Camanho PP (2017a) Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach. Compos Sci Technol 150:205–216CrossRefGoogle Scholar
  144. 144.
    Reinoso J, Catalanotti G, Blázquez A, Areias P, Camanho PP, París F (2017b) A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion. Int J Solids Struct 126–127:37–53CrossRefGoogle Scholar
  145. 145.
    Reinoso J, Paggi M, Linder C (2017c) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation. Comput Mech 59:981–1001MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Rolfes R, Ernst G, Vogler M, Hühne C (2008) Material and failure models for textile composites. In: Camanho PP, Dávila CG, Pinho ST, Remmers JJC (eds) Mechanical response of composites, computational methods in applied sciences, vol 10. Springer, Dordrecht, pp 27–56CrossRefGoogle Scholar
  147. 147.
    Saito H, Morita M, Kawabe K, Kanesaki M, Takeuchi H, Tanaka M, Kimpara I (2011) Effect of ply-thickness on impact damage morphology in CFRP laminates. J Reinf Plast Compos 30:1097–1106CrossRefGoogle Scholar
  148. 148.
    Saito H, Takeuchi H, Kimpara I (2012) Experimental evaluation of the damage growth restraining in \(90^\circ\) layer of thin-ply CFRP cross-ply laminates. Adv Compos Mater 21:57–66Google Scholar
  149. 149.
    Saito H, Takeuchi H, Kimpara I (2014) A study of crack suppression mechanism of thin-ply carbon-fiber-reinforced polymer laminate with mesoscopic numerical simulation. J Compos Mater 48(17):2085–2096CrossRefGoogle Scholar
  150. 150.
    Sebaey TA, Costa J, Maimí P, Batista Y, Blanco N, Mayugo JA (2014) Measurement of the in situ transverse tensile strength of composite plies by means of the real time monitoring of microcracking. Compos Part B Eng 65:40–46CrossRefGoogle Scholar
  151. 151.
    Sihn S, Kim RY, Kawabe K, Tsai SW (2007) Experimental studies of thin-ply laminated composites. Compos Sci Technol 67:996–1008CrossRefGoogle Scholar
  152. 152.
    Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449zbMATHCrossRefGoogle Scholar
  153. 153.
    Soden PD, Kaddour AS, Hinton MJ (2004) Recommendations for designers and researchers resulting from the world-wide failure exercise. Compos Sci Technol 64:589–604CrossRefGoogle Scholar
  154. 154.
    Song K, Li Y, Rose CA (2011) Continuum damage mechanics models for the analysis of progressive failure in open-hole tension laminates. Tech. Rep. NF1676L-12382, NASA Langley Research Center, Hampton, VirginiaGoogle Scholar
  155. 155.
    Spencer AJM (1987) Kinematic constraints, constitutive equations and failure rules for anisotropic materials. In: Boehler JP (ed) Applications of Tensor Functions in Solid Mechanics, CISM Courses and Lectures—No. 292. Springer, Wien, pp 187–201CrossRefGoogle Scholar
  156. 156.
    Strobl M, Seelig T (2016) On constitutive assumptions in phase field approaches to brittle fracture. Proc Struct Integr 2:3705–3712CrossRefGoogle Scholar
  157. 157.
    Sun CT, Tao J (1998) Prediction of failure envelopes and stress/strain behaviour of composite laminates. Compos Sci Technol 58:1125–1136CrossRefGoogle Scholar
  158. 158.
    Swolfs Y, Gorbatikh L, Romanov V, Orlova S, Lomov SV, Verpoest I (2013a) Stress concentrations in an impregnated fibre bundle with random fibre packing. Compos Sci Technol 74:113–120CrossRefGoogle Scholar
  159. 159.
    Swolfs Y, Gorbatikh L, Verpoest I (2013b) Stress concentrations in hybrid unidirectional fibre-reinforced composites with random fibre packings. Compos Sci Technol 85:10–16CrossRefGoogle Scholar
  160. 160.
    Swolfs Y, McMeeking RM, Verpoest I, Gorbatikh L (2015a) Matrix cracks around fibre breaks and their effect on stress redistribution and failure development in unidirectional composites. Compos Sci Technol 108:16–22CrossRefGoogle Scholar
  161. 161.
    Swolfs Y, McMeeking RM, Verpoest I, Gorbatikh L (2015b) The effect of fibre dispersion on initial failure strain and cluster development in unidirectional carbon/glass hybrid composites. Compos Part A Appl Sci 69:279–287CrossRefGoogle Scholar
  162. 162.
    Swolfs Y, Verpoest I, Gorbatikh L (2015c) Issues in strength models for unidirectional fibre-reinforced composites related to Weibull distributions, fibre packings and boundary effects. Compos Sci Technol 114:42–49CrossRefGoogle Scholar
  163. 163.
    Swolfs Y, Verpoest I, Gorbatikh L (2016) Maximising the hybrid effect in unidirectional hybrid composites. Mater Des 93:39–45CrossRefGoogle Scholar
  164. 164.
    Tanné E, Li T, Bourdin B, Marigo J, Maurini C (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80–99MathSciNetCrossRefGoogle Scholar
  165. 165.
    Tao J, Sun CT (1998) Influence of ply orientation on delamination in composite laminates. J Compos Mater 32(21):1933–1947CrossRefGoogle Scholar
  166. 166.
    Tavares RP, Melro AR, Bessa MA, Turon A, Liu WK, Camanho PP (2016) Mechanics of hybrid polymer composites: analytical and computational study. Comput Mech 57:405–421MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    Tavares RP, Otero F, Turon A, Camanho PP (2017) Effective simulation of the mechanics of longitudinal tensile failure of unidirectional polymer composites. Int J Fract 208:269–285CrossRefGoogle Scholar
  168. 168.
    Teichtmeister S, Miehe C (2015) Phase-field modeling of fracture in anisotropic media. Proc Appl Math Mech 15:159–160CrossRefGoogle Scholar
  169. 169.
    Totry E, González C, Llorca J (2008a) Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear. Compos Sci Technol 68:829–839zbMATHCrossRefGoogle Scholar
  170. 170.
    Totry E, González C, Llorca J (2008b) Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational mechanics. Compos Sci Technol 68:3128–3136CrossRefGoogle Scholar
  171. 171.
    Totry E, Molina-Aldareguía JM, González C, Llorca J (2010) Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos Sci Technol 70:970–980zbMATHCrossRefGoogle Scholar
  172. 172.
    Trias D (2005) Analysis and simulation of transverse random fracture of long fibre reinforced composites. Ph.D. thesis, Universitat de Girona, Escola Politècnica Superior, GironaGoogle Scholar
  173. 173.
    Trias D, Costa J, Mayugo JA, Hurtado JE (2006) Random models versus periodic models for fiber reinforced composites. Comput Mater Sci 38:316–324CrossRefGoogle Scholar
  174. 174.
    Tsai SW (2008) Strength and Life of Composites. Composites Design Group, Department of Aeronautics and Astronautics, Stanford UniversityGoogle Scholar
  175. 175.
    Tsai SW, Melo JDD (2014) An invariant-based theory of composites. Compos Sci Technol 100:237–243CrossRefGoogle Scholar
  176. 176.
    Tsai SW, Melo JDD (2015) Composite Materials Design and Testing—Unlocking mystery with invariants. Composites Design Group, Department of Aeronautics and Astronautics, Stanford University, StanfordGoogle Scholar
  177. 177.
    Tsai SW, Melo JDD (2016) A unit circle failure criterion for carbon fiber reinforced polymer composites. Compos Sci Technol 123:71–78CrossRefGoogle Scholar
  178. 178.
    van der Meer FP, Dávila CG (2013) Cohesive modeling of transverse cracking in laminates under in-plane loading with a single layer of elements per ply. Int J Solids Struct 50:3308–3318CrossRefGoogle Scholar
  179. 179.
    Van der Meer FP, Sluys LJ (2009) A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int J Fract 158:107–124zbMATHCrossRefGoogle Scholar
  180. 180.
    Van der Meer FP, Sluys LJ (2010) Mesh-independent modeling of both distributed and discrete matrix cracking in interaction with delamination in composites. Eng Fract Mech 77:719–735CrossRefGoogle Scholar
  181. 181.
    Varandas LF, Arteiro A, Bessa MA, Melro AR, Catalanotti G (2017) The effect of through-thickness compressive stress on mode II interlaminar crack propagation: a computational micromechanics approach. Compos Struct 182:326–334CrossRefGoogle Scholar
  182. 182.
    Varna J, Berglund LA, Ericson ML (1997) Transverse single-fibre test for interfacial debonding in composites: 2. Modelling. Compos Part A Appl Sci 28A:317–326CrossRefGoogle Scholar
  183. 183.
    Vaughan TJ, McCarthy CT (2010) A combined experimental numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials. Compos Sci Technol 70:291–297CrossRefGoogle Scholar
  184. 184.
    Vaughan TJ, McCarthy CT (2011a) A micromechanical study on the effect of intra-ply properties on transverse shear fracture in fibre reinforced composites. Compos Part A Appl Sci 42:1217–1228CrossRefGoogle Scholar
  185. 185.
    Vaughan TJ, McCarthy CT (2011b) Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos Sci Technol 71:388–396CrossRefGoogle Scholar
  186. 186.
    Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62MathSciNetzbMATHCrossRefGoogle Scholar
  187. 187.
    Vignollet J, May S, de Borst R, Verhoosel CV (2014) Phase-field models for brittle and cohesive fracture. Meccanica 49:2587–2601MathSciNetCrossRefGoogle Scholar
  188. 188.
    Violeau D, Ladevèze P, Lubineau G (2009) Micromodel-based simulations for laminated composites. Compos Sci Technol 69:1364–1371zbMATHCrossRefGoogle Scholar
  189. 189.
    Vogler TJ, Kyriakides S (2001) On the initiation and growth of kink bands in fiber composites: Part I. Experiments. Int J Solids Struct 38:2639–2651zbMATHCrossRefGoogle Scholar
  190. 190.
    Vogler M, Rolfes R, Camanho PP (2013) Modeling the inelastic deformation and fracture of polymer composites—Part I: plasticity model. Mech Mater 59:50–64CrossRefGoogle Scholar
  191. 191.
    Waddoups ME, Eisenmann JR, Kaminski BE (1971) Macroscopic fracture mechanics of advanced composite materials. J Compos Mater 5:446–454CrossRefGoogle Scholar
  192. 192.
    Walker TH, Avery WB, Ilcewicz LB, Poe, Jr CC, Harris CE (1991) Tension fracture of laminates for transport fuselage. Part I: material screening. In: Soderquist JR, Neri LM, Bohon HL (eds) Proceedings of the 9th DoD/NASA/FAA conference on fibrous composites in structural design, Lake Tahoe, Nevada, vol II, pp 747–787Google Scholar
  193. 193.
    Whitney JM, Nuismer RJ (1974) Stress fracture criteria for laminated composites containing stress concentrations. J Compos Mater 8:253–265CrossRefGoogle Scholar
  194. 194.
    Wisnom MR (2010) Modelling discrete failures in composites with interface elements. Compos Part A Appl Sci 41:795–805CrossRefGoogle Scholar
  195. 195.
    Wongsto A, Li S (2005) Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section. Compos Part A Appl Sci 36:1246–1266CrossRefGoogle Scholar
  196. 196.
    Yang S, Tewari A, Gokhale AM (1997) Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite. Acta Mater 45(7):3059–3069CrossRefGoogle Scholar
  197. 197.
    Yokozeki T, Aoki Y, Ogasawara T (2008) Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates. Compos Struct 82:382–389CrossRefGoogle Scholar
  198. 198.
    Zobeiry N, Forghani A, McGregor C, Vaziri R, Poursartip A (2008) Progressive damage modeling of composite materials under both tensile and compressive loading regimes. In: Camanho PP, Dávila CG, Pinho ST, Remmers JJC (eds) Mechanical response of composites, computational methods in applied sciences, vol 10. Springer, Dordrecht, pp 179–195CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2018

Authors and Affiliations

  1. 1.DEMec, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  2. 2.Advanced Composites Research Group (ACRG), School of Mechanical and Aerospace EngineeringQueen’s University BelfastBelfastUK
  3. 3.Elasticity and Strength of Materials Group, School of EngineeringUniversidad de SevillaSevilleSpain
  4. 4.AIRBUS Operations GmbHHamburgGermany
  5. 5.INEGI, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia IndustrialPortoPortugal

Personalised recommendations